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Preface to the Fifth Edition

In the earlier editions of this book, open turbomachines, categorised as wind 
turbines, propellers and unshrouded fans, were deliberately excluded because of 
the conceptual obstacle of precisely defining the mass flow that interacts with the
blades. However, having studied and taught the topic of Wind Turbines for a number
of years at the University of Liverpool, as part of a course on Renewable Energy, it
became apparent this was really only a matter of approach. In this book a new chapter
on wind turbines has been added, which deals with the basic aerodynamics of the wind
turbine rotor. This chapter offers the student a short basic course dealing with the essen-
tial fluid mechanics of the machine, together with numerous worked examples at
various levels of difficulty. Important aspects concerning the criteria of blade selection
and blade manufacture, control methods for regulating power output and rotor speed
and performance testing are touched upon. Also included are some very brief notes 
concerning public and environmental issues which are becoming increasingly impor-
tant as they, ultimately, can affect the development of wind turbines. It is a matter 
of some regret that many aspects of the nature of the wind, e.g. methodology of deter-
mining the average wind speed, frequency distribution, power law and the effect of 
elevation (and location), cannot be included, as constraints on book length have to be
considered.

The world is becoming increasingly concerned with the very major issues sur-
rounding the use of various forms of energy. The ever-growing demand for oil and the
undeniably diminishing amount of oil available, global warming seemingly linked to
increased levels of CO2 and the related threat of rising sea levels are just a few of these
issues. Governments, scientific and engineering organisations as well as large (and
small) businesses are now striving to change the profile of energy usage in many coun-
tries throughout the world by helping to build or adopt renewable energy sources for
their power or heating needs. Almost everywhere there is evidence of the large-scale
construction of wind turbine farms and plans for even more. Many countries (the UK,
Denmark, Holland, Germany, India, etc.) are aiming to have between 10 and 20% of
their installed power generated from renewable energy sources by around 2010. The
main burden for this shift is expected to come from wind power. It is hoped that this
new chapter will instruct the students faced with the task of understanding the techni-
calities and science of wind turbines.

Renewable energy topics were added to the fourth edition of this book by way of the
Wells turbine and a new chapter on hydraulic turbines. Some of the derivatives of the
Wells turbine have now been added to the chapters on axial flow and radial flow tur-
bines. It is likely that some of these new developments will flourish and become a major
source of renewable energy once sufficient investment is given to the research.
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The opportunity has been taken to add some new information about the fluid 
mechanics of turbomachinery where appropriate as well as including various corrections
to the fourth edition, in particular to the section on backswept vanes of centrifugal 
compressors.

S.L.D.
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Preface to the Fourth Edition

It is now 20 years since the third edition of this book was published and in that period
many advances have been made to the art and science of turbomachinery design.
Knowledge of the flow processes within turbomachines has increased dramatically
resulting in the appearance of new and innovative designs. Some of the long-standing,
apparently intractable, problems such as surge and rotating stall have begun to yield to
new methods of control. New types of flow machine have made their appearance (e.g.
the Wells turbine and the axi-fuge compressor) and some changes have been made to
established design procedures. Much attention is now being given to blade and flow
passage design using computational fluid dynamics (CFD) and this must eventually
bring forth further design and flow efficiency improvements. However, the fundamen-
tals do not change and this book is still concerned with the basics of the subject as well
as looking at new ideas.

The book was originally perceived as a text for students taking an Honours degree
in engineering which included turbomachines as well as assisting those undertaking
more advanced postgraduate courses in the subject. The book was written for engineers
rather than mathematicians. Much stress is laid on physical concepts rather than math-
ematics and the use of specialised mathematical techniques is mostly kept to a
minimum. The book should continue to be of use to engineers in industry and techno-
logical establishments, especially as brief reviews are included on many important
aspects of turbomachinery giving pointers to more advanced sources of information.
For those looking towards the wider reaches of the subject area some interesting reading
is contained in the bibliography. It might be of interest to know that the third edition
was published in four languages.

A fairly large number of additions and extensions have been included in the book
from the new material mentioned as well as “tidying up” various sections no longer to
my liking. Additions include some details of a new method of fan blade design, the
determination of the design point efficiency of a turbine stage, sections on centrifugal
stresses in turbine blades and blade cooling, control of flow instabilities in axial-flow
compressors, design of the Wells turbine, consideration of rothalpy conservation in
impellers (and rotors), defining and calculating the optimum efficiency of inward flow
turbines and comparison with the nominal design. A number of extensions of existing
topics have been included such as updating and extending the treatment and applica-
tion of diffuser research, effect of prerotation of the flow in centrifugal compressors
and the use of backward swept vanes on their performance, also changes in the design
philosophy concerning the blading of axial-flow compressors. The original chapter on
radial flow turbines has been split into two chapters; one dealing with radial gas tur-
bines with some new extensions and the other on hydraulic turbines. In a world striv-
ing for a “greener” future it was felt that there would now be more than just a little
interest in hydraulic turbines. It is a subject that is usually included in many mechan-
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ical engineering courses. This chapter includes a few new ideas which could be of some
interest.

A large number of illustrative examples have been included in the text and many
new problems have been added at the end of most chapters (answers are given at the
end of the book)! It is planned to publish a new supplementary text called Solutions
Manual, hopefully, shortly after this present text book is due to appear, giving the com-
plete and detailed solutions of the unsolved problems.

S. Lawrence Dixon
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Preface to Third Edition

Several modifications have been incorporated into the text in the light of recent
advances in some aspects of the subject. Further information on the interesting phe-
nomenon of cavitation has been included and a new section on the optimum design of
a pump inlet together with a worked example have been added which take into account
recently published data on cavitation limitations. The chapter on three-dimensional
flows in axial turbomachines has been extended; in particular the section concerning
the constant specific mass flow design of a turbine nozzle has been clarified and now
includes the flow equations for a following rotor row. Some minor alterations on the
definition of blade shapes were needed so I have taken the opportunity of including a
simplified version of the parabolic arc camber line as used for some low camber
blading.

Despite careful proof reading a number of errors still managed to elude me in the
second edition. I am most grateful to those readers who have detected errors and com-
municated with me about them.

In order to assist the reader I have (at last) added a list of symbols used in the text.
S.L.D.
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List of Symbols

A area
A2 area of actuator disc
a sonic velocity, position of maximum camber
a– axial-flow induction factor
a¢ tangential flow coefficient
b passage width, maximum camber
Cc chordwise force coefficient
Cf tangential force coefficient
CL, CD lift and drag coefficients
CP power coefficient
Cp specific heat at constant pressure, pressure coefficient, pressure rise 

coefficient
Cpi ideal pressure rise coefficient
Cv specific heat at constant volume
CX, CY axial and tangential force coefficients
c absolute velocity
co spouting velocity
D drag force, diameter
Deq equivalent diffusion ratio
Dh hydraulic mean diameter
E, e energy, specific energy
F Prandtl correction factor
Fc centrifugal force in blade
f acceleration, friction factor
g gravitational acceleration
H head, blade height
HE effective head
Hf head loss fue to friction
HG gross head
HS net positive suction head (NPSH)
h specific enthalpy
I rothalpy
i incidence angle
J tip–speed ratio
j local blade–speed ratio
K, k constants
KN nozzle velocity coefficient
L lift force, length of diffuser wall
l blade chord length, pipe length
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M Mach number
m mass, molecular “weight”
N rotational speed, axial length of diffuser
NS specific speed (rev)
NSP power specific speed (rev)
NSS suction specific speed (rev)
n number of stages, polytropic index
P power
p pressure
pa atmospheric pressure
pv vapour pressure
pw rate of energy loss
Q heat transfer, volume flow rate
q dryness fraction
R reaction, specific gas constant, tip radius of a blade, radius of 

slipstream
Re Reynolds number
RH reheat factor
Ro universal gas constant
r radius
S entropy, power ratio
s blade pitch, specific entropy
T temperature
t time, thickness
U blade speed, internal energy
u specific internal energy
V, v volume, specific volume
W work transfer
DW specific work transfer
w relative velocity
X axial force
x, y, z Cartesian coordinate directions
Y tangential force, actual tangential blade load per unit span
Yid ideal tangential blade load per unit span
Yk tip clearance loss coefficient
Yp profile loss coefficient
YS net secondary loss coefficient
Z number of blades, Ainley blade loading parameter

a absolute flow angle
b relative flow angle, pitch angle of blade
G circulation
g ratio of specific heats
d deviation angle
e fluid deflection angle, cooling effectiveness, drag–lift ratio

xx List of Symbols



z enthalpy loss coefficient, total pressure loss coefficient, relative power
coefficient

h efficiency
Q minimum opening at cascade exit
q blade camber angle, wake momentum thickness
l profile loss coefficient, blade loading coefficient
m dynamic viscosity
� kinematic viscosity, blade stagger angle, velocity ratio
r density
s slip factor, solidity
sb blade cavitation coefficient
sc Thoma’s coefficient, centrifugal stress
t torque
f flow coefficient, velocity ratio, relative flow angle
Y stage loading factor
W speed of rotation (rad/s)
WS specific speed (rad)
WSP power specific speed (rad)
WSS suction specific speed (rad)
w vorticity
w– stagnation pressure loss coefficient

Subscripts
av average
c compressor, critical
D diffuser
e exit
h hydraulic, hub
i inlet, impeller
id ideal
is isentropic
m mean, meridional, mechanical, material
N nozzle
n normal component
o stagnation property, overall
p polytropic, constant pressure
R reversible process, rotor
r radial
rel relative
s isentropic, stall condition
ss stage isentropic
t turbine, tip, transverse
� velocity
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x, y, z cartesian coordinate components
q tangential

Superscript
. time rate of change
- average
¢ blade angle (as distinct from flow angle)
* nominal condition
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CHAPTER 1

Introduction: Dimensional
Analysis: Similitude
If you have known one you have known all. (TERENCE, Phormio.)

Definition of a turbomachine
We classify as turbomachines all those devices in which energy is transferred 

either to, or from, a continuously flowing fluid by the dynamic action of one or 
more moving blade rows. The word turbo or turbinis is of Latin origin and implies that
which spins or whirls around. Essentially, a rotating blade row, a rotor or an impeller
changes the stagnation enthalpy of the fluid moving through it by either doing positive
or negative work, depending upon the effect required of the machine. These enthalpy
changes are intimately linked with the pressure changes occurring simultaneously in
the fluid.

In the earlier editions of this book, open turbomachines, such as wind turbines, pro-
pellers and unshrouded fans were deliberately excluded, primarily because of the con-
ceptual difficulty of properly defining the mass flow that passes through the blades.
However, despite this apparent problem, the study of wind turbines has become an
attractive and even an urgent task, not least because of the almost astonishing increase
in their number. Wind turbines are becoming increasingly significant providers of elec-
trical power and targets have even been set in some countries for at least 10% of power
generation to be effected by this means by 2010. It is a matter of expediency to now
include the aerodynamic theory of wind turbines in this book and so a new chapter has
been added on the topic. It will be observed that the problem of dealing with the inde-
terminate mass flow has been more or less resolved.

Two main categories of turbomachine are identified: firstly, those that absorb power
to increase the fluid pressure or head (ducted fans, compressors and pumps); secondly,
those that produce power by expanding fluid to a lower pressure or head (hydraulic,
steam and gas turbines). Figure 1.1 shows, in a simple diagrammatic form, a selection
of the many different varieties of turbomachine encountered in practice. The reason
that so many different types of either pump (compressor) or turbine are in use is because
of the almost infinite range of service requirements. Generally speaking, for a given set
of operating requirements one type of pump or turbine is best suited to provide optimum
conditions of operation. This point is discussed more fully in the section of this chapter
concerned with specific speed.

1



Turbomachines are further categorised according to the nature of the flow path
through the passages of the rotor. When the path of the through-flow is wholly or mainly
parallel to the axis of rotation, the device is termed an axial flow turbomachine (e.g.
Figure 1.1(a) and (e)). When the path of the through-flow is wholly or mainly in a plane
perpendicular to the rotation axis, the device is termed a radial flow turbomachine (e.g.
Figure 1.1(c)). More detailed sketches of radial flow machines are given in Figures 7.1,
7.2, 8.2 and 8.3. Mixed flow turbomachines are widely used. The term mixed flow in
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this context refers to the direction of the through-flow at rotor outlet when both radial
and axial velocity components are present in significant amounts. Figure 1.1(b) shows
a mixed flow pump and Figure 1.1(d) a mixed flow hydraulic turbine.

One further category should be mentioned. All turbomachines can be classified as
either impulse or reaction machines according to whether pressure changes are absent
or present respectively in the flow through the rotor. In an impulse machine all the pres-
sure change takes place in one or more nozzles, the fluid being directed onto the rotor.
The Pelton wheel, Figure 1.1(f), is an example of an impulse turbine.

The main purpose of this book is to examine, through the laws of fluid mechanics
and thermodynamics, the means by which the energy transfer is achieved in the chief
types of turbomachine, together with the differing behaviour of individual types in oper-
ation. Methods of analysing the flow processes differ depending upon the geometrical
configuration of the machine, whether the fluid can be regarded as incompressible or
not, and whether the machine absorbs or produces work. As far as possible, a unified
treatment is adopted so that machines having similar configurations and function are
considered together.

Units and dimensions
The International System of Units, SI (le Système International d’Unités) is a unified

self-consistent system of measurement units based on the MKS (metre–kilogram–
second) system. It is a simple, logical system based upon decimal relationships between
units making it easy to use. The most recent detailed description of SI has been 
published in 1986 by HMSO. For an explanation of the relationship between, and use
of, physical quantities, units and numerical values see Quantities, Units and Symbols
(1975), published by The Royal Society or refer to ISO 31/0-1981.

Great Britain was the first of the English-speaking countries to begin, in the 1960s,
the long process of abandoning the old Imperial System of Units in favour of the
International System of Units, and was soon followed by Canada, Australia, New
Zealand and South Africa. In the USA a ten year voluntary plan of conversion to SI
units was commenced in 1971. In 1975 US President Ford signed the Metric Conversion
Act which coordinated the metrication of units, but did so without specifying a sched-
ule of conversion. Industries heavily involved in international trade (cars, aircraft, food
and drink) have, however, been quick to change to SI for obvious economic reasons,
but others have been reluctant to change.

SI has now become established as the only system of units used for teaching 
engineering in colleges, schools and universities in most industrialised countries
throughout the world. The Imperial System was derived arbitrarily and has no consis-
tent numerical base, making it confusing and difficult to learn. In this book all numeri-
cal problems involving units are performed in metric units as this is more convenient
than attempting to use a mixture of the two systems. However, it is recognised that
some problems exist as a result of the conversion to SI units. One of these is that many
valuable papers and texts written prior to 1969 contain data in the old system of units
and would need converting to SI units. A brief summary of the conversion factors
between the more frequently used Imperial units and SI units is given in Appendix 1
of this book.

Introduction: Dimensional Analysis: Similitude 3



Some SI units

The SI basic units used in fluid mechanics and thermodynamics are the metre (m),
kilogram (kg), second (s) and thermodynamic temperature (K). All the other units 
used in this book are derived from these basic units. The unit of force is the newton
(N), defined as that force which, when applied to a mass of 1 kilogram, gives an 
acceleration to the mass of 1 m/s2. The recommended unit of pressure is the pascal
(Pa) which is the pressure produced by a force of 1 newton uniformly distributed over
an area of 1 square metre. Several other units of pressure are in widespread use,
however, foremost of these being the bar. Much basic data concerning properties of
substances (steam and gas tables, charts, etc.) have been prepared in SI units with pres-
sure given in bars and it is acknowledged that this alternative unit of pressure will con-
tinue to be used for some time as a matter of expediency. It is noted that 1 bar equals
105 Pa (i.e. 105 N/m2), roughly the pressure of the atmosphere at sea level, and is
perhaps an inconveniently large unit for pressure in the field of turbomachinery
anyway! In this book the convenient size of the kilopascal (kPa) is found to be the most
useful multiple of the recommended unit and is extensively used in most calculations
and examples.

In SI the units of all forms of energy are the same as for work. The unit of energy
is the joule (J) which is the work done when a force of 1 newton is displaced through
a distance of 1 metre in the direction of the force, e.g. kinetic energy (1/2 mc2) has 
the dimensions kg ¥ m2/s2; however, 1 kg = 1 Ns2/m from the definition of the newton
given above. Hence, the units of kinetic energy must be Nm = J upon substituting
dimensions.

The watt (W) is the unit of power; when 1 watt is applied for 1 second to a system
the input of energy to that system is 1 joule (i.e. 1 J).

The hertz (Hz) is the number of repetitions of a regular occurrence in 1 second.
Instead of writing c/s for cycles/sec, Hz is used.

The unit of thermodynamic temperature is the kelvin (K), written without the ° sign,
and is the fraction 1/273.16 of the thermodynamic temperature of the triple point of
water. The degree celsius (°C) is equal to the unit kelvin. Zero on the celsius scale is
the temperature of the ice point (273.15 K). Specific heat capacity, or simply specific
heat, is expressed as J/kg K or as J/kg°C.

Dynamic viscosity, dimensions ML-1T -1, has the SI units of pascal seconds, i.e.

Hydraulic engineers find it convenient to express pressure in terms of head of a
liquid. The static pressure at any point in a liquid at rest is, relative to the pressure
acting on the free surface, proportional to the vertical distance of the free surface above
that point. The head H is simply the height of a column of the liquid which can be sup-
ported by this pressure. If r is the mass density (kg/m3) and g the local gravitational
acceleration (m/s2), then the static pressure p (relative to atmospheric pressure) is 
p = rgH, where H is in metres and p is in pascals (or N/m2). This is left for the student
to verify as a simple exercise.

M

LT
∫

◊
=

◊
◊

= ◊
kg

m s

N s

m s
Pa s
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Dimensional analysis and performance laws
The widest comprehension of the general behaviour of all turbomachines is, without

doubt, obtained from dimensional analysis. This is the formal procedure whereby the
group of variables representing some physical situation is reduced into a smaller
number of dimensionless groups. When the number of independent variables is not too
great, dimensional analysis enables experimental relations between variables to be
found with the greatest economy of effort. Dimensional analysis applied to turboma-
chines has two further important uses: (a) prediction of a prototype’s performance from
tests conducted on a scale model (similitude); (b) determination of the most suitable
type of machine, on the basis of maximum efficiency, for a specified range of head,
speed and flow rate. Several methods of constructing non-dimensional groups have
been described by Douglas et al. (1995) and by Shames (1992) among other authors.
The subject of dimensional analysis was made simple and much more interesting by
Edward Taylor (1974) in his comprehensive account of the subject. It is assumed here
that the basic techniques of forming non-dimensional groups have already been
acquired by the student.

Adopting the simple approach of elementary thermodynamics, an imaginary enve-
lope (called a control surface) of fixed shape, position and orientation is drawn around
the turbomachine (Figure 1.2). Across this boundary, fluid flows steadily, entering at
station 1 and leaving at station 2. As well as the flow of fluid there is a flow of work
across the control surface, transmitted by the shaft either to, or from, the machine. For
the present all details of the flow within the machine can be ignored and only exter-
nally observed features such as shaft speed, flow rate, torque and change in fluid prop-
erties across the machine need be considered. To be specific, let the turbomachine be
a pump (although the analysis could apply to other classes of turbomachine) driven by
an electric motor. The speed of rotation N, can be adjusted by altering the current to
the motor; the volume flow rate Q, can be independently adjusted by means of a throt-
tle valve. For fixed values of the set Q and N, all other variables such as torque t, head
H, are thereby established. The choice of Q and N as control variables is clearly arbi-
trary and any other pair of independent variables such as t and H could equally well
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have been chosen. The important point to recognise is that there are for this pump, two
control variables.

If the fluid flowing is changed for another of different density r, and viscosity m, the
performance of the machine will be affected. Note, also, that for a turbomachine han-
dling compressible fluids, other fluid properties are important and are discussed later.

So far we have considered only one particular turbomachine, namely a pump of a
given size. To extend the range of this discussion, the effect of the geometric variables
on the performance must now be included. The size of machine is characterised by the
impeller diameter D, and the shape can be expressed by a number of length ratios, l1/D,
l2/D, etc.

Incompressible fluid analysis
The performance of a turbomachine can now be expressed in terms of the control

variables, geometric variables and fluid properties. For the hydraulic pump it is con-
venient to regard the net energy transfer gH, the efficiency h, and power supplied P,
as dependent variables and to write the three functional relationships as

(1.1a)

(1.1b)

(1.1c)

By the procedure of dimensional analysis using the three primary dimensions, mass,
length and time, or alternatively, using three of the independent variables we can form
the dimensionless groups. The latter, more direct procedure requires that the variables
selected, r, N, D, do not of themselves form a dimensionless group. The selection of
r, N, D as common factors avoids the appearance of special fluid terms (e.g. m, Q) in
more than one group and allows gH, h and P to be made explicit. Hence the three rela-
tionships reduce to the following easily verified forms.

Energy transfer coefficient, sometimes called head coefficient

(1.2a)

(1.2b)

Power coefficient

(1.2c)

The non-dimensional group Q/(ND3) is a volumetric flow coefficient and rND2/m is
a form of Reynolds number, Re. In axial flow turbomachines, an alternative to Q/(ND3)
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which is frequently used is the velocity (or flow) coefficient f = cx /U where U is blade
tip speed and cx the average axial velocity. Since

and U � ND.
then

Because of the large number of independent groups of variables on the right-hand side
of eqns. (1.2), those relationships are virtually worthless unless certain terms can be
discarded. In a family of geometrically similar machines l1/D, l2/D are constant and
may be eliminated forthwith. The kinematic viscosity, � = m/r is very small in turbo-
machines handling water and, although speed, expressed by ND, is low the Reynolds
number is correspondingly high. Experiments confirm that effects of Reynolds number
on the performance are small and may be ignored in a first approximation. The func-
tional relationships for geometrically similar hydraulic turbomachines are then,

(1.3a)

(1.3b)

(1.3c)

This is as far as the reasoning of dimensional analysis alone can be taken; the actual
form of the functions f4, f5 and f6 must be ascertained by experiment.

One relation between y, f, h and P̂ may be immediately stated. For a pump the net
hydraulic power, PN equals rQgH which is the minimum shaft power required in the
absence of all losses. No real process of power conversion is free of losses and the
actual shaft power P must be larger than PN. We define pump efficiency (more precise
definitions of efficiency are stated in Chapter 2) h = PN/P = rQgH/P. Therefore

(1.4)

Thus f6 may be derived from f4 and f5 since P̂ = fy/h. For a turbine the net hydraulic
power PN supplied is greater than the actual shaft power delivered by the machine and
the efficiency h = P/PN. This can be rewritten as P̂ = hfy by reasoning similar to the
above considerations.

Performance characteristics
The operating condition of a turbomachine will be dynamically similar at two dif-

ferent rotational speeds if all fluid velocities at corresponding points within the machine
are in the same direction and proportional to the blade speed. If two points, one on each
of two different head–flow characteristics, represent dynamically similar operation of
the machine, then the non-dimensional groups of the variables involved, ignoring
Reynolds number effects, may be expected to have the same numerical value for both
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points. On this basis, non-dimensional presentation of performance data has the impor-
tant practical advantage of collapsing into virtually a single curve results that would
otherwise require a multiplicity of curves if plotted dimensionally.

Evidence in support of the foregoing assertion is provided in Figure 1.3 which shows
experimental results obtained by the author (at the University of Liverpool) on a simple
centrifugal laboratory pump. Within the normal operating range of this pump, 0.03 <
Q/(ND3) < 0.06, very little systematic scatter is apparent which might be associated with
a Reynolds number effect, for the range of speeds 2500 � N � 5000 rev/min. For smaller
flows, Q/(ND3) < 0.025, the flow became unsteady and the manometer readings of 
uncertain accuracy but, nevertheless, dynamically similar conditions still appear to hold
true. Examining the results at high flow rates one is struck by a marked systematic 
deviation away from the “single-curve” law at increasing speed. This effect is due to
cavitation, a high speed phenomenon of hydraulic machines caused by the release of
vapour bubbles at low pressures, which is discussed later in this chapter. It will be clear
at this stage that under cavitating flow conditions, dynamical similarity is not possible.

The non-dimensional results shown in Figure 1.3 have, of course, been obtained for
a particular pump. They would also be approximately valid for a range of different
pump sizes so long as all these pumps are geometrically similar and cavitation is absent.
Thus, neglecting any change in performance due to change in Reynolds number, the
dynamically similar results in Figure 1.3 can be applied to predicting the dimensional
performance of a given pump for a series of required speeds. Figure 1.4 shows such a
dimensional presentation. It will be clear from the above discussion that the locus of
dynamically similar points in the H–Q field lies on a parabola since H varies as N 2 and
Q varies as N.

Variable geometry turbomachines
The efficiency of a fixed geometry machine, ignoring Reynolds number effects, is a

unique function of flow coefficient. Such a dependence is shown by line (b) in Figure
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1.5. Clearly, off-design operation of such a machine is grossly inefficient and design-
ers sometimes resort to a variable geometry machine in order to obtain a better match
with changing flow conditions. Figure 1.6 shows a sectional sketch of a mixed-flow
pump in which the impeller vane angles may be varied during pump operation. (A
similar arrangement is used in Kaplan turbines, Figure 1.1.) Movement of the vanes is
implemented by cams driven from a servomotor. In some very large installations involv-
ing many thousands of kilowatts and where operating conditions fluctuate, sophisti-
cated systems of control may incorporate an electronic computer.

The lines (a) and (c) in Figure 1.5 show the efficiency curves at other blade settings.
Each of these curves represents, in a sense, a different constant geometry machine. For
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FIG. 1.5. Different efficiency curves for a given machine obtained with various 
blade settings.



such a variable geometry pump the desired operating line intersects the points of
maximum efficiency of each of these curves.

Introducing the additional variable b into eqn. (1.3) to represent the setting of the
vanes, we can write

(1.5)

Alternatively, with b = f3(f, h) = f4(f, y), b can be eliminated to give a new functional
dependence

(1.6)

Thus, efficiency in a variable geometry pump is a function of both flow coefficient and
energy transfer coefficient.

Specific speed
The pump or hydraulic turbine designer is often faced with the basic problem of

deciding what type of turbomachine will be the best choice for a given duty. Usually
the designer will be provided with some preliminary design data such as the head 
H, the volume flow rate Q and the rotational speed N when a pump design is under
consideration. When a turbine preliminary design is being considered the parameters
normally specified are the shaft power P, the head at turbine entry H and the rotational
speed N. A non-dimensional parameter called the specific speed, Ns, referred to and 
conceptualised as the shape number, is often used to facilitate the choice of the 
most appropriate machine. This new parameter is derived from the non-dimensional
groups defined in eqn. (1.3) in such a way that the characteristic diameter D of the 
turbomachine is eliminated. The value of Ns gives the designer a guide to the type of
machine that will provide the normal requirement of high efficiency at the design 
condition.

For any one hydraulic turbomachine with fixed geometry there is a unique relation-
ship between efficiency and flow coefficient if Reynolds number effects are negligible
and cavitation absent. As is suggested by any one of the curves in Figure 1.5, the 
efficiency rises to a maximum value as the flow coefficient is increased and then 
gradually falls with further increase in f. This optimum efficiency h = hmax, is used to
identify a unique value f = f1 and corresponding unique values of y = y1 and P̂ = P̂1.
Thus,
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(1.7a)

(1.7b)

(1.7c)

It is a simple matter to combine any pair of these expressions in such a way as to elimi-
nate the diameter. For a pump the customary way of eliminating D is to divide f11

1/2 by
y 1

3/4. Thus

(1.8)

where Ns is called the specific speed. The term specific speed is justified to the extent
that Ns is directly proportional to N. In the case of a turbine the power specific speed
Nsp is more useful and is defined by

(1.9)

Both eqns. (1.8) and (1.9) are dimensionless. It is always safer and less confusing to
calculate specific speed in one or other of these forms rather than dropping the factors
g and r which would make the equations dimensional and any values of specific speed
obtained using them would then depend upon the choice of the units employed. The
dimensionless form of Ns (and Nsp) is the only one used in this book. Another point
arises from the fact that the rotational speed, N, is expressed in the units of revolutions
per unit of time so that although Ns is dimensionless, numerical values of specific speed
need to be thought of as revs. Alternative versions of eqns. (1.8) and (1.9) in radians
are also in common use and are written

(1.8a)

(1.9a)

There is a simple connection between Ns and Nsp (and between Ws and Wsp). By divid-
ing eqn. (1.9) by eqn. (1.8) we obtain

From the definition of hydraulic efficiency, for a pump we obtain

(1.9b)

and, for a turbine we obtain
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(1.9c)

Remembering that specific speed, as defined above, is at the point of maximum effi-
ciency of a turbomachine, it becomes a parameter of great importance in selecting the
type of machine required for a given duty. The maximum efficiency condition replaces
the condition of geometric similarity, so that any alteration in specific speed implies
that the machine design changes. Broadly speaking, each different class of machine has
its optimum efficiency within its own fairly narrow range of specific speed.

For a pump, eqn. (1.8) indicates, for constant speed N, that Ns is increased by an
increase in Q and decreased by an increase in H. From eqn. (1.7b) it is observed that
H, at a constant speed N, increased with impeller diameter D. Consequently, to increase
Ns the entry area must be made large and/or the maximum impeller diameter small.
Figure 1.7 shows a range of pump impellers varying from the axial-flow type, through
mixed flow to a centrifugal- or radial-flow type. The size of each inlet is such that they
all handle the same volume flow Q. Likewise, the head developed by each impeller (of
different diameter D) is made equal by adjusting the speed of rotation N. Since Q and
H are constant, Ns varies with N alone. The most noticeable feature of this comparison
is the large change in size with specific speed. Since a higher specific speed implies a
smaller machine, for reasons of economy, it is desirable to select the highest possible
specific speed consistent with good efficiency.

Cavitation
In selecting a hydraulic turbomachine for a given head H and capacity Q, it is clear

from the definition of specific speed, eqn. (1.8), that the highest possible value of Ns

should be chosen because of the resulting reduction in size, weight and cost. On this
basis a turbomachine could be made extremely small were it not for the corresponding
increase in the fluid velocities. For machines handling liquids the lower limit of size is
dictated by the phenomenon of cavitation.

Cavitation is the boiling of a liquid at normal temperature when the static pres-
sure is made sufficiently low. It may occur at the entry to pumps or at the exit from
hydraulic turbines in the vicinity of the moving blades. The dynamic action of the 
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blades causes the static pressure to reduce locally in a region which is already normally
below atmospheric pressure and cavitation can commence. The phenomenon is accen-
tuated by the presence of dissolved gases which are released with a reduction in 
pressure.

For the purpose of illustration consider a centrifugal pump operating at constant
speed and capacity. By steadily reducing the inlet pressure head a point is reached when
streams of small vapour bubbles appear within the liquid and close to solid surfaces.
This is called cavitation inception and commences in the regions of lowest pressure.
These bubbles are swept into regions of higher pressure where they collapse. This con-
densation occurs suddenly, the liquid surrounding the bubbles either hitting the walls
or adjacent liquid. The pressure wave produced by bubble collapse (with a magnitude
of the order 400 MPa) momentarily raises the pressure level in the vicinity and the
action ceases. The cycle then repeats itself and the frequency may be as high as 25 kHz
(Shepherd 1956). The repeated action of bubbles collapsing near solid surfaces leads
to the well-known cavitation erosion.

The collapse of vapour cavities generates noise over a wide range of frequencies—
up to 1 MHz has been measured (Pearsall 1972), i.e. so-called white noise. Apparently
the collapsing smaller bubbles cause the higher frequency noise and the larger cavities
the lower frequency noise. Noise measurement can be used as a means of detecting
cavitation (Pearsall 1966 and 1967). Pearsall and McNulty (1968) have shown exper-
imentally that there is a relationship between cavitation noise levels and erosion damage
on cylinders and conclude that a technique could be developed for predicting the occur-
rence of erosion.

Up to this point no detectable deterioration in performance has occurred. However,
with further reduction in inlet pressure, the bubbles increase both in size and number,
coalescing into pockets of vapour which affects the whole field of flow. This growth
of vapour cavities is usually accompanied by a sharp drop in pump performance as
shown conclusively in Figure 1.3 (for the 5000 rev/min test data). It may seem sur-
prising to learn that with this large change in bubble size, the solid surfaces are much
less likely to be damaged than at inception of cavitation. The avoidance of cavitation
inception in conventionally designed machines can be regarded as one of the essential
tasks of both pump and turbine designers. However, in certain recent specialised appli-
cations pumps have been designed to operate under supercavitating conditions. Under
these conditions large size vapour bubbles are formed, but bubble collapse takes place
downstream of the impeller blades. An example of the specialised application of a
supercavitating pump is the fuel pumps of rocket engines for space vehicles where size
and mass must be kept low at all costs. Pearsall (1966) has shown that the supercavi-
tating principle is most suitable for axial flow pumps of high specific speed and has
suggested a design technique using methods similar to those employed for conventional
pumps.

Pearsall (1966) was one of the first to show that operating in the supercavitating
regime was practicable for axial flow pumps and he proposed a design technique 
to enable this mode of operation to be used. A detailed description was later pub-
lished (Pearsall 1973), and the cavitation performance was claimed to be much better
than that of conventional pumps. Some further details are given in Chapter 7 of this
book.
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Cavitation limits

In theory cavitation commences in a liquid when the static pressure is reduced to the
vapour pressure corresponding to the liquid’s temperature. However, in practice, the
physical state of the liquid will determine the pressure at which cavitation starts
(Pearsall 1972). Dissolved gases come out of solution as the pressure is reduced forming
gas cavities at pressures in excess of the vapour pressure. Vapour cavitation requires
the presence of nuclei—submicroscopic gas bubbles or solid non-wetted particles—in
sufficient numbers. It is an interesting fact that in the absence of such nuclei a liquid
can withstand negative pressures (i.e. tensile stresses)! Perhaps the earliest demonstra-
tion of this phenomenon was that performed by Osborne Reynolds (1882) before a
learned society. He showed how a column of mercury more than twice the height of
the barometer could be (and was) supported by the internal cohesion (stress) of the
liquid. More recently Ryley (1980) devised a simple centrifugal apparatus for students
to test the tensile strength of both plain, untreated tap water in comparison with water
that had been filtered and then de-aerated by boiling. Young (1989) gives an extensive
literature list covering many aspects of cavitation including the tensile strength of
liquids. At room temperature the theoretical tensile strength of water is quoted as being
as high as 1000 atm (100 MPa)! Special pre-treatment (i.e. rigorous filtration and pre-
pressurization) of the liquid is required to obtain this state. In general the liquids flowing
through turbomachines will contain some dust and dissolved gases and under these con-
ditions negative pressure does not arise.

A useful parameter is the available suction head at entry to a pump or at exit from
a turbine. This is usually referred to as the net positive suction head, NPSH, defined as

(1.10)

where po and p� are the absolute stagnation and vapour pressures, respectively, at pump
inlet or at turbine outlet.

To take into account the effects of cavitation, the performance laws of a hydraulic
turbomachine should include the additional independent variable Hs. Ignoring the
effects of Reynolds number, the performance laws of a constant geometry hydraulic
turbomachine are then dependent on two groups of variable. Thus, the efficiency,

(1.11)

where the suction specific speed Nss = NQ1/2/(gHs)3/4, determines the effect of cavita-
tion, and f = Q/(ND3), as before.

It is known from experiment that cavitation inception occurs for an almost constant
value of Nss for all pumps (and, separately, for all turbines) designed to resist cavita-
tion. This is because the blade sections at the inlet to these pumps are broadly similar
(likewise, the exit blade sections of turbines are similar) and the shape of the low pres-
sure passages influences the onset of cavitation.

Using the alternative definition of suction specific speed Wss = WQ1/2/(gHs)1/2, where
W is the rotational speed in rad/s, Q is the volume flow in m3/s and gHs, is in m2/s2, it
has been shown empirically (Wislicenus 1947) that

(1.12a)
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for pumps, and

(1.12b)

for turbines.
Pearsall (1967) described a supercavitating pump with a cavitation performance

much better than that of conventional pumps. For this pump suction specific speeds Wss

up to 9.0 were readily obtained and, it was claimed, even better values might be possi-
ble, but at the cost of reduced head and efficiency. It is likely that supercavitating pumps
will be increasingly used in the search for higher speeds, smaller sizes and lower costs.

Compressible gas flow relations
Stagnation properties

In turbomachines handling compressible fluids, large changes in flow velocity occur
across the stages as a result of pressure changes caused by the expansion or compres-
sion processes. For any point in the flow it is convenient to combine the energy terms.
The enthalpy, h, and the kinetic energy, 

1–
2 c2 are combined and the result is called the

stagnation enthalpy,

The stagnation enthalpy is constant in a flow process that does not involve a work trans-
fer or a heat transfer even though irreversible processes may be present. In Figure 1.8,
point 1 represents the actual or static state of a fluid in an enthalpy–entropy diagram
with enthalpy, h1 at pressure P1 and entropy s1. The fluid velocity is c1. The stagnation
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state is represented by the point 01 brought about by an irreversible deceleration. For
a reversible deceleration the stagnation point would be at point 01s and the state change
would be called isentropic.

Stagnation temperature and pressure

If the fluid is a perfect gas, then h = CpT, where Cp = g R/(g - 1), so that the stagna-
tion temperature can be defined as

(1.13a)

where the Mach number, M = c/a = c/÷g RT.
The Gibb’s relation, derived from the second law of thermodynamics (see Chapter

2), is

If the flow is brought to rest both adiabatically and isentropically (i.e. ds = 0), then,
using the above Gibb’s relation,

so that

Integrating, we obtain

and so,

(1.13b)

From the gas law density, r = p/(RT), we obtain r0 /r = (p0 /p)(T/T0) and hence,

(1.13c)

Compressible fluid analysis
The application of dimensional analysis to compressible fluids increases, not unex-

pectedly, the complexity of the functional relationships obtained in comparison with
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those already found for incompressible fluids. Even if the fluid is regarded as a perfect
gas, in addition to the previously used fluid properties, two further characteristics are
required; these are a01, the stagnation speed of sound at entry to the machine and g, the
ratio of specific heats Cp /Cn. In the following analysis the compressible fluids under
discussion are either perfect gases or else dry vapours approximating in behaviour to
a perfect gas.

Another choice of variables is usually preferred when appreciable density changes
occur across the machine. Instead of volume flow rate Q, the mass flow rate m

.
is used;

likewise for the head change H, the isentropic stagnation enthalpy change Dh0s is
employed.

The choice of this last variable is a significant one for, in an ideal and adiabatic
process, Dh0s is equal to the work done by unit mass of fluid. This will be discussed
still further in Chapter 2. Since heat transfer from the casings of turbomachines is, 
in general, of negligible magnitude compared with the flux of energy through the ma-
chine, temperature on its own may be safely excluded as a fluid variable. However,
temperature is an easily observable characteristic and, for a perfect gas, can be easily
introduced at the last by means of the equation of state, p/r = RT, where R = R0 /m =
Cp - Cn, m being the molecular weight of the gas and R0 = 8.314 kJ/(kg mol K) is the
Universal gas constant.

The performance parameters Dh0s, h and P for a turbomachine handling a com-
pressible flow, are expressed functionally as:

(1.14a)

Because r0 and a0 change through a turbomachine, values of these fluid variables are
selected at inlet, denoted by subscript 1. Equation (1.14a) express three separate func-
tional relationships, each of which consists of eight variables. Again, selecting r01, N,
D as common factors each of these three relationships may be reduced to five dimen-
sionless groups,

(1.14b)

Alternatively, the flow coefficient f = m
.
/(r01ND3) can be written as f = m

.
/(r01a01D

2).
As ND is proportional to blade speed, the group ND/a01 is regarded as a blade Mach
number.

For a machine handling a perfect gas a different set of functional relationships is
often more useful. These may be found either by selecting the appropriate variables for
a perfect gas and working through again from first principles or, by means of some
rather straightforward transformations, rewriting eqn. (1.14b) to give more suitable
groups. The latter procedure is preferred here as it provides a useful exercise.

As a concrete example consider an adiabatic compressor handling a perfect gas. The
isentropic stagnation enthalpy rise can now be written Cp(T02s - T01) for the perfect gas.
This compression process is illustrated in Figure 1.9a where the stagnation state point
changes at constant entropy between the stagnation pressures p01 and p02. The equiva-
lent process for a turbine is shown in Figure 1.9b. Using the adiabatic isentropic rela-
tionship p/rg = constant, together with p/r = RT, the expression
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is obtained. Hence Dh0s = CpT01[(p02/p01)(g-1)/g - 1]. Since Cp = g R/(g - 1) and a2
01 = g RT01,

then

The flow coefficient can now be more conveniently expressed as

As m
. ∫ r01D2(ND), the power coefficient may be written

Collecting together all these newly formed non-dimensional groups and inserting them
in eqn. (1.14b) gives

(1.15)

The justification for dropping g from a number of these groups is simply that it
already appears separately as an independent variable.

For a machine of a specific size and handling a single gas it has become customary,
in industry at least, to delete g, R, and D from eqn. (1.15) and similar expressions. If,
in addition, the machine operates at high Reynolds numbers (or over a small speed
range), Re can also be dropped. Under these conditions eqn. (1.15) becomes

(1.16)

Note that by omitting the diameter D and gas constant R, the independent variables in
eqn. (1.16) are no longer dimensionless.
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Figures 1.10 and 1.11 represent typical performance maps obtained from compres-
sor and turbine test results. In both figures the pressure ratio across the whole machine
is plotted as a function of m

.
(÷T01)/p01 for fixed values of N/(÷T01), this being a 

customary method of presentation. Notice that for both machines subscript 1 is used 
to denote conditions as inlet. One of the most striking features of these performance
characteristics is the rather weak dependence of the turbine performance upon 
N/÷T01 contrasting with the strong dependence shown by the compressor on this 
parameter.

The operating line of a compressor lies below and to the right of the surge line,* as
shown in Fig. 1.10. How the position of the operating line is selected is a matter of
judgement for the designer of a gas turbine and is contingent upon factors such as the
maximum rate of acceleration of the machine. The term stall margin is often used to
describe the relative position of the operating line and the surge line. There are several
ways of defining the surge margin (SM) and a fairly simple one often used is:

where (pr)O is a pressure ratio at a point on the operating line at a certain corrected
speed N/÷T01 and (pr)S is the corresponding pressure ratio on the surge line at the same

SM
pr pr

pr
s o

o

=
( ) - ( )

( )
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* The surge line denotes the limit of stable operation of a compressor. A discussion of the phe-
nomenon of “surge” is included in Chapter 5.



corrected speed. With this definition a surge margin of 20–25% could be appropriate
for a compressor used with a turbojet engine. Several other definitions of stall margin
and their merits are discussed by Cumpsty (1989). The choked regions of both the com-
pressor and turbine characteristics may be recognised by the vertical portions of the
constant speed lines. No further increase in m

.
(÷T01)/p01 is possible since the Mach

number across some section of the machine has reached unity and the flow is said to
be choked.

The inherent unsteadiness of the flow 
within turbomachines

A fact often ignored by turbomachinery designers, or even unknown to students, is
that turbomachines can work the way they do only because of unsteady flow effects
taking place within them. The fluid dynamic phenomena that are associated with the
unsteady flow in turbomachines has been examined by Greitzer (1986) in a discourse
which was intended to be an introduction to the subject but actually extended far beyond
the technical level of this book! Basically Greitzer, and others before him, in consid-
ering the fluid mechanical process taking place on a fluid particle in an isentropic flow,
deduced that stagnation enthalpy of the particle can change only if the flow is unsteady.
Dean (1959) appears to have been the first to record that without an unsteady flow inside
a turbomachine, no work transfer can take place. Paradoxically, both at the inlet to and
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outlet from the machine the conditions are such that the flow can be considered as
steady.

A physical situation considered by Greitzer is the axial compressor rotor as depicted
in Figure 1.12a. The pressure field associated with the blades is such that the pressure
increases from the suction surface (S) to the pressure surface (P). This pressure field
moves with the blades and, to an observer situated at the point* (in the absolute frame
of reference), a pressure that varies with time would be recorded, as shown in Figure
1.12b. Thus, fluid particles passing through the rotor would experience a positive pres-
sure increase with time (i.e. ∂p/∂t > 0). From this fact it can then be shown that the
stagnation enthalpy of the fluid particle also increases because of the unsteadiness of
the flow, i.e.

where D/Dt is the rate of change following the fluid particle.
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Problems
1. A fan operating at 1750 rev/min at a volume flow rate of 4.25 m3/s develops a head of 153

mm measured on a water-filled U-tube manometer. It is required to build a larger, geometrically
similar fan which will deliver the same head at the same efficiency as the existing fan, but at a
speed of 1440 rev/min. Calculate the volume flow rate of the larger fan.

2. An axial flow fan 1.83 m diameter is designed to run at a speed of 1400 rev/min with an
average axial air velocity of 12.2 m/s. A quarter scale model has been built to obtain a check on
the design and the rotational speed of the model fan is 4200 rev/min. Determine the axial air
velocity of the model so that dynamical similarity with the full-scale fan is preserved. The effects
of Reynolds number change may be neglected.

A sufficiently large pressure vessel becomes available in which the complete model can be
placed and tested under conditions of complete similarity. The viscosity of the air is independent
of pressure and the temperature is maintained constant. At what pressure must the model be tested?

3. A water turbine is to be designed to produce 27 MW when running at 93.7 rev/min under
a head of 16.5 m. A model turbine with an output of 37.5 kW is to be tested under dynamically
similar conditions with a head of 4.9 m. Calculate the model speed and scale ratio. Assuming a
model efficiency of 88%, estimate the volume flow rate through the model.

It is estimated that the force on the thrust bearing of the full-size machine will be 7.0 GN. For
what thrust must the model bearing be designed?

4. Derive the non-dimensional groups that are normally used in the testing of gas turbines
and compressors.

A compressor has been designed for normal atmospheric conditions (101.3 kPa and 15°C). In
order to economise on the power required it is being tested with a throttle in the entry duct to
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reduce the entry pressure. The characteristic curve for its normal design speed of 4000 rev/min
is being obtained on a day when the ambient temperature is 20°C. At what speed should the 
compressor be run? At the point on the characteristic curve at which the mass flow would nor-
mally be 58 kg/s the entry pressure is 55 kPa. Calculate the actual rate of mass flow during 
the test.

Describe, with the aid of sketches, the relationship between geometry and specific speed for
pumps.
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CHAPTER 2

Basic Thermodynamics, Fluid
Mechanics: Definitions 
of Efficiency
Take your choice of those that can best aid your action. 
(SHAKESPEARE, Coriolanus.)

Introduction
This chapter summarises the basic physical laws of fluid mechanics and thermody-

namics, developing them into a form suitable for the study of turbomachines. Following
this, some of the more important and commonly used expressions for the efficiency of
compression and expansion flow processes are given.

The laws discussed are:

(i) the continuity of flow equation;
(ii) the first law of thermodynamics and the steady flow energy equation;

(iii) the momentum equation;
(iv) the second law of thermodynamics.

All of these laws are usually covered in first-year university engineering and technol-
ogy courses, so only the briefest discussion and analysis is give here. Some textbooks
dealing comprehensively with these laws are those written by Çengel and Boles (1994),
Douglas, Gasiorek and Swaffield (1995), Rogers and Mayhew (1992) and Reynolds
and Perkins (1977). It is worth remembering that these laws are completely general;
they are independent of the nature of the fluid or whether the fluid is compressible or
incompressible.

The equation of continuity
Consider the flow of a fluid with density r, through the element of area dA, during

the time interval dt. Referring to Figure 2.1, if c is the stream velocity the elemen-
tary mass is dm = rcdtdAcosq, where q is the angle subtended by the normal of 
the area element to the stream direction. The velocity component perpendicular to 
the area dA is cn = ccosq and so dm = rcndAdt. The elementary rate of mass flow is
therefore
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(2.1)

Most analyses in this book are limited to one-dimensional steady flows where the
velocity and density are regarded as constant across each section of a duct or passage.
If A1 and A2 are the flow areas at stations 1 and 2 along a passage respectively, then

(2.2)

since there is no accumulation of fluid within the control volume.

The first law of thermodynamics—internal energy
The first law of thermodynamics states that if a system is taken through a complete

cycle during which heat is supplied and work is done, then

(2.3)

where � dQ represents the heat supplied to the system during the cycle and � dW the
work done by the system during the cycle. The units of heat and work in eqn. (2.3) are
taken to be the same.

During a change of state from 1 to 2, there is a change in the property internal energy,

(2.4)

For an infinitesimal change of state

(2.4a)

The steady flow energy equation

Many textbooks, e.g. Çengel and Boles (1994), demonstrate how the first law of ther-
modynamics is applied to the steady flow of fluid through a control volume so that the
steady flow energy equation is obtained. It is unprofitable to reproduce this proof here
and only the final result is quoted. Figure 2.2 shows a control volume representing a
turbomachine, through which fluid passes at a steady rate of mass flow m· , entering at
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position 1 and leaving at position 2. Energy is transferred from the fluid to the blades
of the turbomachine, positive work being done (via the shaft) at the rate W

.
x. In the

general case positive heat transfer takes place at the rate Q
.
, from the surroundings to

the control volume. Thus, with this sign convention the steady flow energy equation is

(2.5)

where h is the specific enthalpy, 1–
2 c2 the kinetic energy per unit mass and gz the poten-

tial energy per unit mass.
Apart from hydraulic machines, the contribution of the last term in eqn. (2.5) is 

small and usually ignored. Defining stagnation enthalpy by h0 = h + 1–
2 c2 and assuming

g(z2 - z1) is negligible, eqn. (2.5) becomes

(2.6)

Most turbomachinery flow processes are adiabatic (or very nearly so) and it is permis-
sible to write Q

.
= 0. For work producing machines (turbines) W

.
x > 0, so that

(2.7)

For work-absorbing machines (compressors) W
.

x < 0, so that it is more convenient to
write

(2.8)

The momentum equation—Newton’s second law 
of motion

One of the most fundamental and valuable principles in mechanics is Newton’s
second law of motion. The momentum equation relates the sum of the external forces
acting on a fluid element to its acceleration, or to the rate of change of momentum in
the direction of the resultant external force. In the study of turbomachines many appli-
cations of the momentum equation can be found, e.g. the force exerted upon a blade in
a compressor or turbine cascade caused by the deflection or acceleration of fluid passing
the blades.
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Considering a system of mass m, the sum of all the body and surface forces acting
on m along some arbitrary direction x is equal to the time rate of change of the total x-
momentum of the system, i.e.

(2.9)

For a control volume where fluid enters steadily at a uniform velocity cx1 and leaves
steadily with a uniform velocity cx2, then

(2.9a)

Equation (2.9a) is the one-dimensional form of the steady flow momentum equation.

Euler’s equation of motion

It can be shown for the steady flow of fluid through an elementary control volume
that, in the absence of all shear forces, the relation

(2.10)

is obtained. This is Euler’s equation of motion for one-dimensional flow and is derived
from Newton’s second law. By shear forces being absent we mean there is neither fric-
tion nor shaft work. However, it is not necessary that heat transfer should also be absent.

Bernoulli’s equation

The one-dimensional form of Euler’s equation applies to a control volume whose
thickness is infinitesimal in the stream direction (Figure 2.3). Integrating this equation
in the stream direction we obtain

(2.10a)

SF m c cx x x= -( )˙ 2 1

SF
t

mcx x= ( )d

d
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which is Bernoulli’s equation. For an incompressible fluid, r is constant and 
eqn. (2.10a) becomes

(2.10b)

where stagnation pressure is p0 = p + 1–
2 rc2.

When dealing with hydraulic turbomachines, the term head, H, occurs frequently and
describes the quantity z + p0 /(rg). Thus eqn. (2.10b) becomes

(2.10c)

If the fluid is a gas or vapour, the change in gravitational potential is generally neg-
ligible and eqn. (2.10a) is then

(2.10d)

Now, if the gas or vapour is subject to only a small pressure change the fluid density
is sensibly constant and

(2.10e)

i.e. the stagnation pressure is constant (this is also true for a compressible isentropic
process).

Moment of momentum

In dynamics much useful information is obtained by employing Newton’s second
law in the form where it applies to the moments of forces. This form is of central impor-
tance in the analysis of the energy transfer process in turbomachines.

For a system of mass m, the vector sum of the moments of all external forces acting
on the system about some arbitrary axis A–A fixed in space is equal to the time rate of
change of angular momentum of the system about that axis, i.e.

(2.11)

where r is distance of the mass centre from the axis of rotation measured along the
normal to the axis and cq the velocity component mutually perpendicular to both the
axis and radius vector r.

For a control volume the law of moment of momentum can be obtained. Figure 2.4
shows the control volume enclosing the rotor of a generalised turbomachine. Swirling
fluid enters the control volume at radius r1 with tangential velocity cq1 and leaves at
radius r2 with tangential velocity cq2. For one-dimensional steady flow

(2.11a)

which states that, the sum of the moments of the external forces acting on fluid tem-
porarily occupying the control volume is equal to the net time rate of efflux of angular
momentum from the control volume.
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Euler’s pump and turbine equations

For a pump or compressor rotor running at angular velocity W, the rate at which the
rotor does work on the fluid is

(2.12)

where the blade speed U = Wr.
Thus the work done on the fluid per unit mass or specific work is

(2.12a)

This equation is referred to as Euler’s pump equation.
For a turbine the fluid does work on the rotor and the sign for work is then reversed.

Thus, the specific work is

(2.12b)

Equation (2.12b) will be referred to as Euler’s turbine equation.

Defining rothalpy

In a compressor or pump the specific work done on the fluid equals the rise in stag-
nation enthalpy. Thus, combining eqns. (2.8) and (2.12a),

(2.12c)

This relationship is true for steady, adiabatic and irreversible flow in compressors or in
pump impellers. After some rearranging of eqn. (2.12c) and writing h0 = h + 1–

2 c2,

(2.12d)

According to the above reasoning a new function I has been defined having the 
same value at exit from the impeller as at entry. The function I has acquired the 
widely used name rothalpy, a contraction of rotational stagnation enthalpy, and is a
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fluid mechanical property of some importance in the study of relative flows in rotating
systems. As the value of rothalpy is apparently* unchanged between entry and exit of
the impeller it is deduced that it must be constant along the flow lines between these
two stations. Thus, the rothalpy can be written generally as

(2.12e)

The same reasoning can be applied to the thermomechanical flow through a turbine
with the same result.

The second law of thermodynamics—entropy
The second law of thermodynamics, developed rigorously in many modern thermo-

dynamic textbooks, e.g. Çengel and Boles (1994), Reynolds and Perkins (1977), Rogers
and Mayhew (1992), enables the concept of entropy to be introduced and ideal ther-
modynamic processes to be defined.

An important and useful corollary of the second law of thermodynamics, known as
the Inequality of Clausius, states that for a system passing through a cycle involving
heat exchanges,

(2.13)

where dQ is an element of heat transferred to the system at an absolute temperature T.
If all the processes in the cycle are reversible then dQ = dQR and the equality in 
eqn. (2.13) holds true, i.e.

(2.13a)

The property called entropy, for a finite change of state, is then defined as

(2.14)

For an incremental change of state

(2.14a)

where m is the mass of the system.
With steady one-dimensional flow through a control volume in which the fluid 

experiences a change of state from condition 1 at entry to 2 at exit,

(2.15)
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If the process is adiabatic, dQ
.

= 0, then

(2.16)

If the process is reversible as well, then

(2.16a)

Thus, for a flow which is adiabatic, the ideal process will be one in which the entropy
remains unchanged during the process (the condition of isentropy).

Several important expressions can be obtained using the above definition of entropy.
For a system of mass m undergoing a reversible process dQ = dQR = mTds and
dW = dWR = mpdv. In the absence of motion, gravity and other effects the first law of
thermodynamics, eqn. (2.4a) becomes

(2.17)

With h = u + pv then dh = du + pdv + vdp and eqn. (2.17) then gives

(2.18)

Definitions of efficiency
A large number of efficiency definitions are included in the literature of turboma-

chines and most workers in this field would agree there are too many. In this book only
those considered to be important and useful are included.

Efficiency of turbines

Turbines are designed to convert the available energy in a flowing fluid into useful
mechanical work delivered at the coupling of the output shaft. The efficiency of this
process, the overall efficiency h0, is a performance factor of considerable interest to
both designer and user of the turbine. Thus,

Mechanical energy losses occur between the turbine rotor and the output shaft cou-
pling as a result of the work done against friction at the bearings, glands, etc. The mag-
nitude of this loss as a fraction of the total energy transferred to the rotor is difficult to
estimate as it varies with the size and individual design of turbomachine. For small
machines (several kilowatts) it may amount to 5% or more, but for medium and large
machines this loss ratio may become as little as 1%. A detailed consideration of the
mechanical losses in turbomachines is beyond the scope of this book and is not pursued
further.

The isentropic efficiency ht or hydraulic efficiency hh for a turbine is, in broad 
terms,
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Comparing the above definitions it is easily deduced that the mechanical efficiency hm,
which is simply the ratio of shaft power to rotor power, is

In the following paragraphs the various definitions of hydraulic and adiabatic efficiency
are discussed in more detail.

For an incremental change of state through a turbomachine the steady flow energy
equation, eqn. (2.5), can be written

From the second law of thermodynamics

Eliminating dQ between these two equations and rearranging

(2.19)

For a turbine expansion, noting W
.

x = W
.

t > 0, integrate eqn. (2.19) from the initial state
1 to the final state 2,

(2.20)

For a reversible adiabatic process, Tds = 0 = dh - dp/r. The incremental maximum
work output is then

Hence, the overall maximum work output between initial state 1 and final state 2 is

(2.20a)

where the subscript s in eqn. (2.20a) denotes that the change of state between 1 and 2
is isentropic.

For an incompressible fluid, in the absence of friction, the maximum work output
from the turbine (ignoring frictional losses) is

(2.20b)

where gH = p/r + 1–
2 c2 + gz

Steam and gas turbines

Figure 2.5a shows a Mollier diagram representing the expansion process through an
adiabatic turbine. Line 1–2 represents the actual expansion and line 1–2s the ideal or
reversible expansion. The fluid velocities at entry to and at exit from a turbine may be
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quite high and the corresponding kinetic energies may be significant. On the other hand,
for a compressible fluid the potential energy terms are usually negligible. Hence the
actual turbine rotor specific work is

Similarly, the ideal turbine rotor specific work between the same two pressures is

In Figure 2.5a the actual turbine work/unit mass of fluid is the stagnation enthalpy
change between state points 01 and 02 which lie on the stagnation pressure lines p01

and p02 respectively. The ideal turbine work per unit mass of fluid is the stagnation
enthalpy change during the isentropic process between the same two pressures. The
kinetic energy of the fluid at the end of the ideal process 1–

2 c2
2s is not, however, the same

as that at the end of the actual process 1–
2 c2

2. This may be adduced as follows. Taking for
simplicity a perfect gas, then h = CpT and p/r = RT. Consider the constant pressure line
p2 (Figure 2.5a); as T2 > T2s then r2s > r2. From continuity m

.
/A = rc and since we are

dealing with the same area, c2 > c2s, and the kinetic energy terms are not equal. The
difference in practice is usually negligible and often ignored.

There are several ways of expressing efficiency, the choice of definition depending
largely upon whether the exit kinetic energy is usefully employed or is wasted. An
example where the exhaust kinetic energy is not wasted is from the last stage of an air-
craft gas turbine where it contributes to the jet propulsive thrust. Likewise, the exit
kinetic energy from one stage of a multistage turbine where it is used in the next stage
provides another example. For these two cases the turbine and stage adiabatic efficiency
h, is the total-to-total efficiency and is defined as

(2.21)

If the difference between the inlet and outlet kinetic energies is small, i.e. 1–
2 c2

1 �
1–
2 c2

2,
then

DW W m h h h h c cx s s smax
˙ ˙ ( ) ( ).max= = - = - + -01 02 1 2

1
2 1

2
2
2
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(2.21a)

When the exhaust kinetic energy is not usefully employed and entirely wasted, the
relevant adiabatic efficiency is the total-to-static efficiency hts. In this case the ideal
turbine work is that obtained between state points 01 and 2s. Thus

(2.22)

If the difference between inlet and outlet kinetic energies is small, eqn. (2.22) becomes

(2.22a)

A situation where the outlet kinetic energy is wasted is a turbine exhausting directly to
the surroundings rather than through a diffuser. For example, auxiliary turbines used in
rockets often do not have exhaust diffusers because the disadvantages of increased mass
and space utilisation are greater than the extra propellant required as a result of reduced
turbine efficiency.

Hydraulic turbines

When the working fluid is a liquid, the turbine hydraulic efficiency, hh, is defined as
the work supplied by the rotor in unit time divided by the hydrodynamic energy dif-
ference of the fluid per unit time, i.e.

(2.23)

Efficiency of compressors and pumps

The isentropic efficiency hc of a compressor or the hydraulic efficiency of a pump hh

is broadly defined as

The power input to the rotor (or impeller) is always less than the power supplied at the
coupling because of external energy losses in the bearings and glands, etc. Thus, the
overall efficiency of the compressor or pump is

Hence the mechanical efficiency is

In eqn. (2.19), for a compressor or pump process, replace -dW
.

x with dW
.

c and
rearrange the inequality to give the incremental work input

(2.24)

34 Fluid Mechanics, Thermodynamics of Turbomachinery



The student should carefully check the fact that the right-hand side of this inequality
is positive, working from eqn. (2.19).

For a complete adiabatic compression process going from state 1 to state 2, the
overall work input rate is

(2.25)

For the corresponding reversible adiabatic compression process, noting that Tds = 0 =
dh - dp / r, the minimum work input rate is

(2.26)

From the steady flow energy equation, for an adiabatic process in a compressor

(2.27)

Figure 2.5b shows a Mollier diagram on which the actual compression process is rep-
resented by the state change 1–2 and the corresponding ideal process by 1–2s. For an
adiabatic compressor the only meaningful efficiency is the total-to-total efficiency
which is

(2.28)

If the difference between inlet and outlet kinetic energies is small, 1–
2 c2

1 �
1–
2 c2

2 and

(2.28a)

For incompressible flow, eqn. (2.25) gives

For the ideal case with no fluid friction

(2.29)

For a pump the hydraulic efficiency is defined as

(2.30)

Small stage or polytropic efficiency
The isentropic efficiency described in the preceding section, although fundamentally

valid, can be misleading if used for comparing the efficiencies of turbomachines of dif-
fering pressure ratios. Now any turbomachine may be regarded as being composed of

Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency 35



a large number of very small stages irrespective of the actual number of stages in the
machine. If each small stage has the same efficiency, then the isentropic efficiency of
the whole machine will be different from the small stage efficiency, the difference
depending upon the pressure ratio of the machine. This perhaps rather surprising result
is a manifestation of a simple thermodynamic effect concealed in the expression for
isentropic efficiency and is made apparent in the following argument.

Compression process

Figure 2.6 shows an enthalpy–entropy diagram on which adiabatic compression
between pressures p1 and p2 is represented by the change of state between points 1 and
2. The corresponding reversible process is represented by the isentropic line 1 to 2s. It
is assumed that the compression process may be divided up into a large number of
small stages of equal efficiency hp. For each small stage the actual work input is dW
and the corresponding ideal work in the isentropic process is dWmin. With the notation
of Figure 2.6,

Since each small stage has the same efficiency, then hp = ( ) is also true.
From the relation Tds = dh - �dp, for a constant pressure process, (∂h/∂s)p1 = T. This

means that the higher the fluid temperature the greater is the slope of the constant pres-
sure lines on the Mollier diagram. For a gas where h is a function of T, constant pres-
sure lines diverge and the slope of the line p2 is greater than the slope of line p1 at the
same value of entropy. At equal values of T, constant pressure lines are of equal slope
as indicated in Figure 2.6. For the special case of a perfect gas (where Cp is constant),

S Sd dW Wmin
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Cp (dT/ds) = T for a constant pressure process. Integrating this expression results in the
equation for a constant pressure line, s = Cp logT + constant.

Returning now to the more general case, since

then

The adiabatic efficiency of the whole compression process is

Because of the divergence of the constant pressure lines

i.e.

Therefore,

Thus, for a compression process the isentropic efficiency of the machine is less than
the small stage efficiency, the difference being dependent upon the divergence of the
constant pressure lines. Although the foregoing discussion has been in terms of static
states it can be regarded as applying to stagnation states if the inlet and outlet kinetic
energies from each stage are equal.

Small stage efficiency for a perfect gas

An explicit relation can be readily derived for a perfect gas (Cp is constant) 
between small stage efficiency, the overall isentropic efficiency and pressure ratio. 
The analysis is for the limiting case of an infinitesimal compressor stage in which 
the incremental change in pressure is dp as indicated in Figure 2.7. For the actual 
process the incremental enthalpy rise is dh and the corresponding ideal enthalpy rise is
dhis.

The polytropic efficiency for the small stage is

(2.31)

since for an isentropic process Tds = 0 = dhis - vdp.
Substituting v = RT / p in eqn. (2.31), then

and hence

SdW Wmin min .>

SdW h h h h h hx y x= -( ) + -( ) +{ } = -( )1 2 1
. . . ,
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as (2.32)

Integrating eqn. (2.32) across the whole compressor and taking equal efficiency for each
infinitesimal stage gives

(2.33)

Now the isentropic efficiency for the whole compression process is

(2.34)

if it is assumed that the velocities at inlet and outlet are equal.
For the ideal compression process put hp = 1 in eqn. (2.32) and so obtain

(2.35)

which is also obtainable from pvg = constant and pv = RT. Substituting eqns. (2.33) and
(2.35) into eqn. (2.34) results in the expression

(2.36)

Values of “overall” isentropic efficiency have been calculated using eqn. (2.36) for a
range of pressure ratio and different values of hp, and are plotted in Figure 2.8. This
figure amplifies the observation made earlier that the isentropic efficiency of a finite
compression process is less than the efficiency of the small stages. Comparison of the
isentropic efficiency of two machines of different pressure ratios is not a valid proce-
dure since, for equal polytropic efficiency, the compressor with the highest pressure
ratio is penalised by the hidden thermodynamic effect.
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The term polytropic used above arises in the context of a reversible compressor com-
pressing a gas from the same initial state to the same final state as the irreversible adi-
abatic compressor but obeying the relation p�n = constant. The index n is called the
polytropic index. Since an increase in entropy occurs for the change of state in both
compressors, for the reversible compressor this is possible only if there is a reversible
heat transfer dQR = Tds. Proceeding further, it follows that the value of the index n must
always exceed that of g. This is clear from the following argument. For the polytropic
process,

Using pvn = constant and C� = R/(g - 1), after some manipulation the expression 
dQR = (g - n) / (g - 1) pd� is derived. For a compression process d� < 0 and dQR > 0
then n > g. For an expansion process d� > 0, dQR < 0 and again n > g.

EXAMPLE 2.1. An axial flow air compressor is designed to provide an overall total-
to-total pressure ratio of 8 to 1. At inlet and outlet the stagnation temperatures are 
300K and 586.4K, respectively.

Determine the overall total-to-total efficiency and the polytropic efficiency for the
compressor. Assume that g for air is 1.4.

Solution. From eqn. (2.28), substituting h = CpT, the efficiency can be written as

Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency 39

FIG. 2.8. Relationship between isentropic (overall) efficiency, pressure ratio and small
stage (polytropic) efficiency for a compressor (g = 1.4).



From eqn. (2.33), taking logs of both sides and re-arranging, we get,

Turbine polytropic efficiency

A similar analysis to the compression process can be applied to a perfect gas expand-
ing through an adiabatic turbine. For the turbine the appropriate expressions for an
expansion, from a state 1 to a state 2, are

(2.37)

(2.38)

The derivation of these expressions is left as an exercise for the student. “Overall”
isentropic efficiencies have been calculated for a range of pressure ratio and different
polytropic efficiencies and are shown in Figure 2.9. The most notable feature of these
results is that, in contrast with a compression process, for an expansion, isentropic effi-
ciency exceeds small stage efficiency.

Reheat factor

The foregoing relations obviously cannot be applied to steam turbines as vapours do
not in general obey the gas laws. It is customary in steam turbine practice to use a
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FIG. 2.9. Turbine isentropic efficiency against pressure ratio for various polytropic
efficiencies (g = 1.4).



reheat factor RH as a measure of the inefficiency of the complete expansion. Referring
to Figure 2.10, the expansion process through an adiabatic turbine from state 1 to state
2 is shown on a Mollier diagram, split into a number of small stages. The reheat factor
is defined as

Due to the gradual divergence of the constant pressure lines on a Mollier chart, RH is
always greater than unity. The actual value of RH for a large number of stages will
depend upon the position of the expansion line on the Mollier chart and the overall
pressure ratio of the expansion. In normal steam turbine practice the value of RH is
usually between 1.03 and 1.08. For an isentropic expansion in the superheated region
with pvn = constant, the tables of Rogers and Mayhew (1995) give a value for n = 1.3.
Assuming this value for n is valid, the relationship between reheat factor and pressure
ratio for various fixed values of the polytropic efficiency has been calculated and is
shown in Figure 2.11.

Now since the isentropic efficiency of the turbine is
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then

(2.39)

which establishes the connection between polytropic efficiency, reheat factor and
turbine isentropic efficiency.

Nozzle efficiency
In a large number of turbomachinery components the flow process can be regarded

as a purely nozzle flow in which the fluid receives an acceleration as a result of a drop
in pressure. Such a nozzle flow occurs at entry to all turbomachines and in the sta-
tionary blade rows in turbines. In axial machines the expansion at entry is assisted by
a row of stationary blades (called guide vanes in compressors and nozzles in turbines)
which direct the fluid on to the rotor with a large swirl angle. Centrifugal compressors
and pumps, on the other hand, often have no such provision for flow guidance but there
is still a velocity increase obtained from a contraction in entry flow area.

Figure 2.12a shows the process on a Mollier diagram, the expansion proceeding from
state 1 to state 2. It is assumed that the process is steady and adiabatic such that 
h01 = h02.
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According to Horlock (1966), the most frequently used definition of nozzle effi-
ciency, hN is the ratio of the final kinetic energy per unit mass to the maximum theo-
retical kinetic energy per unit mass obtained by an isentropic expansion to the same
back pressure, i.e.

(2.40)

Nozzle efficiency is sometimes expressed in terms of various loss or other coefficients.
An enthalpy loss coefficient for the nozzle can be defined as

(2.41)

and, also, a velocity coefficient for the nozzle,

(2.42)

It is easy to show that these definitions are related to one another by

(2.43)

EXAMPLE 2.2. Gas enters the nozzles of a turbine stage at a stagnation pressure and
temperature of 4.0 bar and 1200K and leaves with a velocity of 572m/s and at a static
pressure of 2.36 bar. Determine the nozzle efficiency assuming the gas has the average
properties over the temperature range of the expansion of Cp = 1.160kJ/kgK and g =
1.33.

Solution. From eqns. (2.40) and (2.35) the nozzle efficiency becomes

Assuming adiabatic flow (T02 = T01):

and thus

Diffusers
A diffuser is a component of a fluid flow system designed to reduce the flow veloc-

ity and thereby increase the fluid pressure. All turbomachines and many other flow
systems incorporate a diffuser (e.g. closed circuit wind tunnels, the duct between the
compressor and burner of a gas turbine engine, the duct at exit from a gas turbine con-
nected to the jet pipe, the duct following the impeller of a centrifugal compressor, etc.).
Turbomachinery flows are, in general, subsonic (M < 1) and the diffuser can be repre-
sented as a channel diverging in the direction of flow (see Figure 2.13).

The basic diffuser is a geometrically simple device with a rather long history of 
investigation by many researchers. The long timespan of the research is an indicator
that the fluid mechanical processes within it are complex, the research rather more dif-
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ficult than might be anticipated, and some aspects of the flow processes are still not
fully understood. There is now a vast literature about the flow in diffusers and their
performance. Only a few of the more prominent investigations are referenced here. A
noteworthy and recommended reference, however, which reviews many diverse and
recondite aspects of diffuser design and flow phenomena, is that of Kline and Johnson
(1986).

The primary fluid mechanical problem of the diffusion process is caused by the ten-
dency of the boundary layers to separate from the diffuser walls if the rate of diffusion
is too rapid. The result of too rapid diffusion is always large losses in stagnation 
pressure. On the other hand, if the rate of diffusion is too low, the fluid is exposed 
to an excessive length of wall and fluid friction losses become predominant. Clearly,
there must be an optimum rate of diffusion between these two extremes for which 
the losses are minimised. Test results from many sources indicate that an included 
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angle of about 2q = 7deg gives the optimum recovery for both two-dimensional and
conical diffusers.

Diffuser performance parameters

The diffusion process can be represented on a Mollier diagram, Figure 2.12b, by the
change of state from point 1 to point 2, and the corresponding changes in pressure and
velocity from p1 and c1 to p2 and c2. The actual performance of a diffuser can be
expressed in several different ways:

(i) as the ratio of the actual enthalpy change to the isentropic enthalpy change;
(ii) as the ratio of an actual pressure rise coefficient to an ideal pressure rise coeffi-

cient.

For steady and adiabatic flow in stationary passages, h01 = h02, so that

(2.44a)

For the equivalent reversible adiabatic process from state point 1 to state point 2s,

(2.44b)

Diffuser efficiency, hD, also called diffuser effectiveness, can be defined as

(2.45a)

In a low speed flow or a flow in which the density r can be considered nearly constant,

so that the diffuser efficiency can be written

(2.45b)

Equation (2.45a) can be expressed entirely in terms of pressure differences, by writing

then, with eqn. (2.45a),

(2.46)

Alternative expressions for diffuser performance

(i) A pressure rise coefficient Cp can be defined

(2.47a)

where q1 = 1–
2 rc2

1.
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For an incompressible flow through the diffuser the energy equation can be written
as

(2.48)

where the loss in total pressure, Dp0 = p01 - p02. Also, using the continuity equation
across the diffuser, c1A1 = c2A2, we obtain

(2.49)

where AR is the area ratio of the diffuser.
From eqn. (2.48), by setting Dp0 to zero and with eqn. (2.49), it is easy to show that

the ideal pressure rise coefficient is

(2.47b)

Thus, eqn. (2.48) can be rewritten as

(2.50)

Using the definition given in eqn. (2.46), then the diffuser efficiency (referred to as dif-
fuser effectiveness by Sovran and Klomp (1967)), is

(2.51)

(ii) A total pressure recovery factor, p02/p01, is sometimes used as an indicator of the
performance of diffusers. From eqn. (2.45a), the diffuser efficiency can be written

(2.52)

For the isentropic process 1 - 2s:

For the constant temperature process 01 - 02, Tds = -dp/r which, when combined with
the gas law, p/r = RT, gives ds = -Rdp/p:

For the constant pressure process 2s - 2, Tds = dh = CpdT,

Equating these expressions for the entropy increase and using R/Cp = (g - 1)/g, then
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Substituting these two expressions into eqn. (2.52):

(2.53)

The variation of hD as a function of the static pressure ratio, p2/p1, for specific values
of the total pressure recovery factor, p02/p01, is shown in Figure 2.14.

Some remarks on diffuser performance

It was pointed out by Sovran and Klomp (1967) that the uniformity or steadiness of
the flow at the diffuser exit is as important as the reduction in flow velocity (or the
static pressure rise) produced. This is particularly so in the case of a compressor located
at the diffuser exit since the compressor performance is sensitive to non-uniformities
in velocity in its inlet flow. Figure 2.15, from Sovran and Klomp (1967), shows the
occurrence of flow unsteadiness and/or non-uniform flow at the exit from two-
dimensional diffusers (correlated originally by Kline, Abbott and Fox 1959). Four dif-
ferent flow regimes exist, three of which have steady or reasonably steady flow. The
region of “no appreciable stall” is steady and uniform. The region marked “large tran-
sitory stall” is unsteady and non-uniform, while the “fully developed” and “jet flow”
regions are reasonably steady but very non-uniform.
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The line marked a–a will be of interest in turbomachinery applications. However, a
sharply marked transition does not exist and the definition of an appropriate line in-
volves a certain degree of arbitrariness and subjectivity on the occurrence of “first stall”.

Figure 2.16 shows typical performance curves for a rectangular diffuser with a fixed
sidewall to length ratio, L/W1 = 8.0, given in Kline et al. (1959). On the line labelled
Cp, points numbered 1, 2 and 3 are shown. These same numbered points are redrawn
onto Figure 2.15 to show where they lie in relation to the various flow regimes.
Inspection of the location of point 2 shows that optimum recovery at constant length
occurs slightly above the line marked No appreciable stall. The performance of the dif-
fuser between points 2 and 3 in Figure 2.16 shows a very significant deterioration and
is in the regime of large amplitude, very unsteady flow.

Maximum pressure recovery

From an inspection of eqn. (2.46) it will be observed that when diffuser efficiency
hD is a maximum, the total pressure loss is a minimum for a given rise in static pres-
sure. Another optimum problem is the requirement of maximum pressure recovery for
a given diffuser length in the flow direction regardless of the area ratio Ar = A2/A1. This
may seem surprising but, in general, this optimum condition produces a different dif-
fuser geometry from that needed for optimum efficiency. This can be demonstrated by
means of the following considerations.

From eqn. (2.51), taking logs of both sides and differentiating, we get
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Setting the left-hand side to zero for the condition of maximum hD, then

(2.54)

Thus, at the maximum efficiency the fractional rate of increase of Cp with a change in
q is equal to the fractional rate of increase of Cpi with a change in q. At this point Cp

is positive and, by definition, both Cpi and ∂Cp /∂q are also positive. Equation (2.54)
shows that ∂Cp /∂q > 0 at the maximum efficiency point. Clearly, Cp cannot be at its
maximum when hD is at its peak value! What happens is that Cp continues to increase
until ∂Cp /∂q = 0, as can be seen from the curves in Figure 2.16.

Now, upon differentiating eqn. (2.50) with respect to q and setting the left-hand side
to zero, the condition for maximum Cp is obtained, namely

Thus, as the diffuser angle is increased beyond the divergence which gave maximum
efficiency, the actual pressure rise will continue to rise until the additional losses in

50 Fluid Mechanics, Thermodynamics of Turbomachinery

1.0

0.8

0.6

0.4

0.2

0
10 20 4030

2Q (deg)

3

2

1

hD

Cpi

w

Cp

FIG. 2.16. Typical diffuser performance curves for a two-dimensional diffuser, with
L /W1 = 8.0 (adapted from Kline et al. 1959).



total pressure balance the theoretical gain in pressure recovery produced by the
increased area ratio.

Diffuser design calculation

The performance of a conical diffuser has been chosen for this purpose using 
data presented by Sovran and Klomp (1967). This is shown in Figure 2.17 as 
contour plots of cp in terms of the geometry of the diffuser, L/R1 and the area ratio 
AR. Two optimum diffuser lines, useful for design purposes, were added by the 
authors. The first is the line c*p, the locus of points which defines the diffuser area 
ratio AR, producing the maximum pressure recovery for a prescribed non-dimensional
length, L/R1. The second is the line cp**, the locus of points defining the diffuser non-
dimensional length, producing the maximum pressure recovery at a prescribed area
ratio.

EXAMPLE 2.3. Design a conical diffuser to give maximum pressure recovery in a
non-dimensional length N/R1 = 4.66 using the data given in Figure 2.17.
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Solution. From the graph, using log-linear scaling, the appropriate value of cp is 0.6
and the corresponding value of AR is 2.13. From eqn. (2.47b), cpi = 1 - (1/2 ·132) = 0.78.
Hence, hD = 0.6/0.78 = 0.77.

Transposing the expression given in Figure 2.13b, the included cone angle can be
found:

EXAMPLE 2.4. Design a conical diffuser to give maximum pressure recovery at a
prescribed area ratio AR = 1.8 using the data given in Figure 2.17.

Solution. From the graph, cp = 0.6 and N/R1 = 7.85 (using log-linear scaling). Thus,

Analysis of a non-uniform diffuser flow

The actual pressure recovery produced by a diffuser of optimum geometry is known
to be strongly affected by the shape of the velocity profile at inlet. A large reduction in
the pressure rise which might be expected from a diffuser can result from inlet flow
non-uniformities (e.g. wall boundary layers and, possibly, wakes from a preceding row
of blades). Sovran and Klomp (1967) presented an incompressible flow analysis which
helps to explain how this deterioration in performance occurs and some of the main
details of their analysis are included in the following account.

The mass-averaged total pressure p–0 at any cross-section of a diffuser can be obtained
by integrating over the section area. For symmetrical ducts with straight centre lines
the static pressure can be considered constant, as it is normally. Thus,

(2.55)

The average axial velocity U and the average dynamic pressure q at a section are

Substituting into eqn. (2.55),

(2.56)

where a is the kinetic energy flux coefficient of the velocity profile, i.e.
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(2.57)

where c2—
is the mean square of the velocity in the cross-section and Q = AU, i.e.

From eqn. (2.56) the change in static pressure is found as

(2.58)

From eqn. (2.51), with eqns. (2.47a) and (2.47b), the diffuser efficiency (or diffuser
effectiveness) can now be written:

Substituting eqn. (2.58) into the above expression,

(2.59)

where v is the total pressure loss coefficient for the whole diffuser, i.e.

(2.60)

Equation (2.59) is particularly useful as it enables the separate effects due the changes
in the velocity profile and total pressure losses on the diffuser effectiveness to be found.
The first term in the equation gives the reduction in hD caused by insufficient flow dif-
fusion. The second term gives the reduction in hD produced by viscous effects and rep-
resents inefficient flow diffusion. An assessment of the relative proportion of these
effects on the effectiveness requires the accurate measurement of both the inlet and exit
velocity profiles as well as the static pressure rise. Such complete data is seldom derived
by experiments. However, Sovran and Klomp (1967) made the observation that there
is a widely held belief that fluid mechanical losses are the primary cause of poor per-
formance in diffusers. One of the important conclusions they drew from their work was
that the thickening of the inlet boundary layer is primarily responsible for the reduc-
tion in hD. Thus, insufficient flow diffusion rather than inefficient flow diffusion is often
the cause of poor performance.

Some of the most comprehensive tests made of diffuser performance were those of
Stevens and Williams (1980) who included traverses of the flow at inlet and at exit as
well as careful measurements of the static pressure increase and total pressure loss in
low speed tests on annular diffusers. In the following worked example, to illustrate the
preceding theoretical analysis, data from this source has been used.

EXAMPLE 2.5. An annular diffuser with an area ratio, AR = 2.0 is tested at low speed
and the results obtained give the following data:
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Determine the diffuser efficiency.

N.B. B1 and B2 are the fractions of the area blocked by the wall boundary layers at
inlet and exit (displacement thicknesses) and are included only to illustrate the pro-
found effect the diffusion process has on boundary layer thickening.

Solution. From eqns. (2.47a) and (2.58):

Using eqn. (2.59) directly,

Stevens and Williams observed that an incipient transitory stall was in evidence on the
diffuser outer wall which affected the accuracy of the results. So, it is not surprising
that a slight mismatch is evident between the above calculated result and the measured
result.
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Problems

1. For the adiabatic expansion of a perfect gas through a turbine, show that the overall effi-
ciency ht and small stage efficiency hp are related by

where Œ = r(1-g)/g, and r is the expansion pressure ratio, g is the ratio of specific heats.
An axial flow turbine has a small stage efficiency of 86%, an overall pressure ratio of 4.5 to

1 and a mean value of g equal to 1.333. Calculate the overall turbine efficiency.

2. Air is expanded in a multi-stage axial flow turbine, the pressure drop across each stage
being very small. Assuming that air behaves as a perfect gas with ratio of specific heats g, derive
pressure-temperature relationships for the following processes:

(i) reversible adiabatic expansion;
(ii) irreversible adiabatic expansion, with small stage efficiency hp;

(iii) reversible expansion in which the heat loss in each stage is a constant fraction k of the
enthalpy drop in that stage;

(iv) reversible expansion in which the heat loss is proportional to the absolute temperature T.
Sketch the first three processes on a T, s diagram.

If the entry temperature is 1100K, and the pressure ratio across the turbine is 6 to 1, calculate
the exhaust temperatures in each of the first three cases. Assume that g is 1.333, that hp = 0.85,
and that k = 0.1.

3. A multistage high-pressure steam turbine is supplied with steam at a stagnation pressure
of 7MPa and a stagnation temperature of 500°C. The corresponding specific enthalpy is 3410
kJ/kg. The steam exhausts from the turbine at a stagnation pressure of 0.7MPa, the steam having
been in a superheated condition throughout the expansion. It can be assumed that the steam
behaves like a perfect gas over the range of the expansion and that g = 1.3. Given that the turbine
flow process has a small-stage efficiency of 0.82, determine

(i) the temperature and specific volume at the end of the expansion;
(ii) the reheat factor.

The specific volume of superheated steam is represented by pv = 0.231(h - 1943), where p is in
kPa, v is in m3/kg and h is in kJ/kg.

4. A 20MW back-pressure turbine receives steam at 4MPa and 300°C, exhausting from the
last stage at 0.35MPa. The stage efficiency is 0.85, reheat factor 1.04 and external losses 2% of
the actual sentropic enthalpy drop. Determine the rate of steam flow.

At the exit from the first stage nozzles the steam velocity is 244m/s, specific volume 68.6
dm3/kg, mean diameter 762mm and steam exit angle 76deg measured from the axial direction.
Determine the nozzle exit height of this stage.

5. Steam is supplied to the first stage of a five stage pressure-compounded steam turbine at a
stagnation pressure of 1.5MPa and a stagnation temperature of 350°C. The steam leaves the last
stage at a stagnation pressure of 7.0kPa with a corresponding dryness fraction of 0.95. By using
a Mollier chart for steam and assuming that the stagnation state point locus is a straight line
joining the initial and final states, determine

(i) the stagnation conditions between each stage assuming that each stage does the same amount
of work;

(ii) the total-to-total efficiency of each stage;
(iii) the overall total-to-total efficiency and total-to-static efficiency assuming the steam enters

the condenser with a velocity of 200m/s;
(iv) the reheat factor based upon stagnation conditions.
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CHAPTER 3

Two-dimensional Cascades
Let us first understand the facts and then we may seek the causes.
(ARISTOTLE.)

Introduction
The operation of any turbomachine is directly dependent upon changes in the

working fluid’s angular momentum as it crosses individual blade rows. A deeper insight
of turbomachinery mechanics may be gained from consideration of the flow changes
and forces exerted within these individual blade rows. In this chapter the flow past two-
dimensional blade cascades is examined.

A review of the many different types of cascade tunnel, which includes low-speed,
high-speed, intermittent blowdown and suction tunnels, etc. is given by Sieverding
(1985). The range of Mach number in axial-flow turbomachines can be considered to
extend from M = 0.2 to 2.5 (of course, if we also include fans then the lower end of
the range is very low). Two main types of cascade tunnel are:

(i) low-speed, operating in the range 20–60m/s; and
(ii) high-speed, for the compressible flow range of testing.

A typical low-speed, continuous running, cascade tunnel is shown in Figure 3.1a.
The linear cascade of blades comprises a number of identical blades, equally spaced
and parallel to one another. A suction slot is situated on the ceiling of the tunnel just
before the cascade to allow the controlled removal of the tunnel boundary layer.
Carefully controlled suction is usually provided on the tunnel sidewalls immediately
upstream of the cascade so that two-dimensional, constant axial velocity flow can be
achieved.

Figure 3.1b shows the test section of a cascade facility for transonic and moderate
supersonic inlet velocities. The upper wall is slotted and equipped for suction, allow-
ing operation in the transonic regime. The flexible section of the upper wall allows for
a change of geometry so that a convergent–divergent nozzle is formed, thus allowing
the flow to expand supersonically upstream of the cascade.

To obtain truly two-dimensional flow would require a cascade of infinite extent. Of
necessity cascades must be limited in size, and careful design is needed to ensure that
at least the central regions (where flow measurements are made) operate with approx-
imately two-dimensional flow.

For axial flow machines of high hub–tip ratio, radial velocities are negligible and, to
a close approximation, the flow may be described as two-dimensional. The flow in a
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cascade is then a reasonable model of the flow in the machine. With lower hub-tip
radius ratios, the blades of a turbomachine will normally have an appreciable amount
of twist along their length, the amount depending upon the sort of “vortex design”
chosen (see Chapter 6). However, data obtained from two-dimensional cascades can
still be of value to a designer requiring the performance at discrete blade sections of
such blade rows.

Cascade nomenclature
A cascade blade profile can be conceived as a curved camber line upon which a profile

thickness distribution is symmetrically superimposed. Referring to Figure 3.2 the
camber line y(x) and profile thickness t(x) are shown as functions of the distance x along
the blade chord l. In British practice the shape of the camber line is usually either a cir-
cular arc or a parabolic arc defined by the maximum camber b located at distance a from
the leading edge of the blade. The profile thickness distribution may be that of a 
standard aerofoil section but, more usually, is one of the sections specifically developed
by the various research establishments for compressor or turbine applications. Blade
camber and thickness distributions are generally presented as tables of y/l and t/l against
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FIG. 3.1. Compressor cascade wind tunnels. (a) Conventional low-speed, continuous
running cascade tunnel (adapted from Carter et al. 1950). (b) Transonic/supersonic

cascade tunnel (adapted from Sieverding 1985).



x/l. Some examples of these tables are quoted by Horlock (1958, 1966). Summarising,
the useful parameters for describing a cascade blade are camber line shape, b/l, a/l, type
of thickness distribution and maximum thickness to chord ratio, tmax/l.

Two important geometric variables, which define the cascade shown in Fig. 3.2, are
the space–chord ratio, s/l, and the stagger angle, x, the angle between the chord line
and the reference direction which is a line perpendicular to the cascade front.
Throughout the remainder of this book unless stated to the contrary, all fluid and blade
angles are referred to this reference direction so as to avoid the needless complication
arising from other directional references. However, custom dies hard; in steam turbine
practice, blade and flow angles are conventionally measured from the tangential direc-
tion (i.e. parallel to the cascade front). Despite this, it is better to avoid ambiguity of
meaning by adopting the single reference direction already given.

The blades angles at entry to and at exit from the cascade are denoted by a ¢1 and a ¢2
respectively. A most useful blade parameter is the camber angle q which is the change
in angle of the camber line between the leading and trailing edges and equals a ¢1–a ¢2
in the notation of Figure 3.2. For circular arc camber lines the stagger angle is 
x = 1–

2 (a ¢1 + a ¢2).

Analysis of cascade forces
The fluid approaches the cascade from far upstream with velocity c1 at an angle a1

and leaves far downstream of the cascade with velocity c2 at an angle a2. In the 
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following analysis the fluid is assumed to be incompressible and the flow to be steady.
The assumption of steady flow is valid for an isolated cascade row but, in a turboma-
chine, relative motion between successive blade rows gives rise to unsteady flow
effects. As regards the assumption of incompressible flow, the majority of cascade tests
are conducted at fairly low Mach numbers (e.g. 0.3 on compressor cascades) when 
compressibility effects are negligible. Various techniques are available for correlating
incompressible and compressible cascades; a brief review is given by Csanady (1964).

A portion of an isolated blade cascade (for a compressor) is shown in Figure 3.3.
The forces X and Y are exerted by unit depth of blade upon the fluid, exactly equal and
opposite to the forces exerted by the fluid upon unit depth of blade. A control surface
is drawn with end boundaries far upstream and downstream of the cascade and with
side boundaries coinciding with the median stream lines.

Applying the principle of continuity to a unit depth of span and noting the assump-
tion of incompressibility yields

(3.1)

The momentum equation applied in the x and y directions with constant axial 
velocity gives,

(3.2)

(3.3)

or

(3.3a)

Equations (3.1) and (3.3) are completely valid for a flow incurring total pressure losses
in the cascade.
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FIG. 3.3. Forces and velocities in a blade cascade.



Energy losses
A real fluid crossing the cascade experiences a loss in total pressure Dp0 due to skin

friction and related effects. Thus

(3.4)

Noting that c1
2 - c2

2 = (c2
y1 + cx

2) - (c2
y2 + cx

2) = (cy1 + cy2)(cy1 - cy2), substitute eqns. (3.2)
and (3.3) into eqn. (3.4) to derive the relation

(3.5)

where

(3.6)

A non-dimensional form of eqn. (3.5) is often useful in presenting the results of cascade
tests. Several forms of total pressure-loss coefficient can be defined of which the most
popular are

(3.7a)

and

(3.7b)

Using again the same reference parameter, a pressure rise coefficient Cp and a tangen-
tial force coefficient Cf may be defined

(3.8)

(3.9)

using eqns. (3.2) and (3.3a).
Substituting these coefficients into eqn. (3.5) to give, after some rearrangement,

(3.10)

Lift and drag
A mean velocity cm is defined as

(3.11)

where am is itself defined by eqn. (3.6). Considering unit depth of a cascade blade, a
lift force L acts in a direction perpendicular to cm and a drag force D in a direction 
parallel to cm. Figure 3.4 shows L and D as the reaction forces exerted by the blade
upon the fluid.
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Experimental data are often presented in terms of lift and drag when the data may
be of greater use in the form of tangential force and total pressure loss. The lift and
drag forces can be resolved in terms of the axial and tangential forces. Referring to
Figure 3.5,

(3.12)

(3.13)

From eqn. (3.5)

(3.14)

Rearranging eqn. (3.14) for X and substituting into eqn. (3.12) gives

(3.15)

after using eqn. (3.9).
Lift and drag coefficients may be introduced as

(3.16a)

(3.16b)

Using eqn. (3.14) together with eqn. (3.7),
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FIG. 3.4. Lift and drag forces exerted by a cascade blade (of unit span) upon the fluid.

FIG. 3.5. Axial and tangential forces exerted by unit span of a blade upon the fluid.



(3.17)

With eqn. (3.15)

(3.18)

Alternatively, employing eqns. (3.9) and (3.17),

(3.19)

Within the normal range of operation in a cascade, values of CD are very much less
than CL. As am is unlikely to exceed 60deg, the quantity CD tan am in eqn. (3.18) can
be dropped, resulting in the approximation

(3.20)

Circulation and lift
The lift of a single isolated aerofoil for the ideal case when D = 0 is given by the

Kutta–Joukowski theorem

(3.21)

where c is the relative velocity between the aerofoil and the fluid at infinity and G is
the circulation about the aerofoil. This theorem is of fundamental importance in the
development of the theory of aerofoils (for further information see Glauert 1959).

In the absence of total pressure losses, the lift force per unit span of a blade in
cascade, using eqn. (3.15), is

(3.22)

Now the circulation is the contour integral of velocity around a closed curve. For the
cascade blade the circulation is

(3.23)

Combining eqns. (3.22) and (3.23),

(3.24)

As the spacing between the cascade blades is increased without limit (i.e. s Æ •),
the inlet and outlet velocities to the cascade, c1 and c2, becomes equal in magnitude and
direction. Thus c1 = c2 = c and eqn. (3.24) become identical with the Kutta–Joukowski
theorem obtained for an isolated aerofoil.
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Efficiency of a compressor cascade
The efficiency hD of a compressor blade cascade can be defined in the same way as

diffuser efficiency; this is the ratio of the actual static pressure rise in the cascade to
the maximum possible theoretical pressure rise (i.e. with Dp0 = 0). Thus,

Inserting eqns. (3.7) and (3.9) into the above equation,

(3.25)

Equation (3.20) can be written as z/Cf � (sec2am)CD/CL which when substituted into
eqn. (3.25) gives

(3.26)

Assuming a constant lift–drag ratio, eqn. (3.26) can be differentiated with respect to
am to give the optimum mean flow angle for maximum efficiency. Thus,

so that

therefore

(3.27)

This simple analysis suggests that maximum efficiency of a compressor cascade 
is obtained when the mean flow angle is 45deg, but ignores changes in the ratio 
CD/CL with varying am. Howell (1945a) calculated the effect of having a specified vari-
ation of CD/CL upon cascade efficiency, comparing it with the case when CD/CL is con-
stant. Figure 3.6 shows the results of this calculation as well as the variation of CD/CL

with am. The graph shows that hDmax
is at an optimum angle only a little less than 45

deg but that the curve is rather flat for a rather wide change in am. Howell suggested
that a value of am rather less than the optimum could well be chosen with little 
sacrifice in efficiency and with some benefit with regard to power–weight ratio of 
compressors. In Howell’s calculations, the drag is an estimate based on cascade 
experimental data together with an allowance for wall boundary-layer losses and 
“secondary-flow” losses.
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Performance of two-dimensional cascades
From the relationships developed earlier in this chapter it is apparent that the effects

of a cascade may be completely deduced if the flow angles at inlet and outlet together
with the pressure loss coefficient are known. However, for a given cascade only one of
these quantities may be arbitrarily specified, the other two being fixed by the cascade
geometry and, to a lesser extent, by the Mach number and Reynolds number of the
flow. For a given family of geometrically similar cascades the performance may be
expressed functionally as

(3.28)

where z is the pressure loss coefficient, eqn. (3.7), M1 is the inlet Mach number =
c1/(gRT1)1/2, Re is the inlet Reynolds number = r1c1l/m based on blade chord length.

Despite numerous attempts it has not been found possible to determine, accurately,
cascade performance characteristics by theoretical means alone and the experimental
method still remains the most reliable technique. An account of the theoretical approach
to the problem lies outside the scope of this book, however, a useful summary of the
subject is given by Horlock (1958).

The cascade wind tunnel
The basis of much turbomachinery research and development derives from the

cascade wind tunnel, e.g. Figure 3.1 (or one of its numerous variants), and a brief
description of the basic aerodynamic design is given below. A more complete descrip-
tion of the cascade tunnel is given by Carter, Andrews and Shaw (1950) including many
of the research techniques developed.

In a well-designed cascade tunnel it is most important that the flow near the central
region of the cascade blades (where the flow measurements are made) is approximately
two-dimensional. This effect could be achieved by employing a large number of long
blades, but an excessive amount of power would be required to operate the tunnel. With
a tunnel of more reasonable size, aerodynamic difficulties become apparent and arise
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FIG. 3.6. Efficiency variation with average flow angle (adapted from Howell 1945).



from the tunnel wall boundary layers interacting with the blades. In particular, and as
illustrated in Figure 3.7a, the tunnel wall boundary layer mingles with the end blade
boundary layer and, as a consequence, this blade stalls resulting in a non-uniform flow
field.

Stalling of the end blade may be delayed by applying a controlled amount of suction
to a slit just upstream of the blade, and sufficient to remove the tunnel wall boundary
layer (Figure 3.7b). Without such boundary-layer removal the effects of flow interfer-
ence can be quite pronounced. They become most pronounced near the cascade “stalling
point” (defined later) when any small disturbance of the upstream flow field precipi-
tates stall on blades adjacent to the end blade. Instability of this type has been observed
in compressor cascades and can affect every blade of the cascade. It is usually charac-
terised by regular, periodic “cells” of stall crossing rapidly from blade to blade; the
term propagating stall is often applied to the phenomenon. Some discussion of the
mechanism of propagating stall is given in Chapter 6.

The boundary layers on the walls to which the blade roots are attached generate sec-
ondary vorticity in passing through the blades which may produce substantial second-
ary flows. The mechanism of this phenomenon has been discussed at some length by
Carter (1948), Horlock (1958) and many others and a brief explanation is included in
Chapter 6.

In a compressor cascade the rapid increase in pressure across the blades causes a
marked thickening of the wall boundary layers and produces an effective contraction
of the flow, as depicted in Figure 3.8. A contraction coefficient, used as a measure of
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FIG. 3.7. Streamline flow through cascades (adapted from Carter et al. 1950).



the boundary-layer growth through the cascade, is defined by r1c1 cosa1/(r2c2 cosa2).
Carter et al. (1950) quote values of 0.9 for a good tunnel dropping to 0.8 in normal
high-speed tunnels and even less in bad cases. These are values for compressor cas-
cades; with turbine cascades slightly higher values can be expected.

Because of the contraction of the main through-flow, the theoretical pressure rise
across a compressor cascade, even allowing for losses, is never achieved. This will be
evident since a contraction (in a subsonic flow) accelerates the fluid, which is in con-
flict with the diffuser action of the cascade.

To counteract these effects it is customary (in Great Britain) to use at least seven
blades in a compressor cascade, each blade having a minimum aspect ratio (blade
span–chord length) of 3. With seven blades, suction is desirable in a compressor cascade
but it is not usual in a turbine cascade. In the United States much lower aspect ratios
are commonly employed in compressor cascade testing, the technique being the almost
complete removal of tunnel wall boundary layers from all four walls using a combi-
nation of suction slots and perforated end walls to which suction is applied.

Cascade test results
The basic cascade performance data in low-speed flows are obtained from measure-

ments of total pressure, flow angle and velocity taken across one or more complete
pitches of the cascade, the plane of measurement being about half a chord downstream
of the trailing edge plane. The literature on instrumentation is very extensive as are the
various measurement techniques employed and the student is referred to the works of
Horlock (1958), Bryer and Pankhurst (1971), Sieverding (1975, 1985). The publication
by Bryer and Pankhurst for deriving air speed and flow direction is particularly instruc-
tive and recommended, containing as it does details of the design and construction of
various instruments used in cascade tunnel measurements as well as their general prin-
ciples and performance details.

Some representative combination pressure probes are shown in Figure 3.9. These
types are frequently used for pitchwise traversing across blade cascades but, because
of their small size, they are also used for interstage (radial) flow traversing in com-
pressors. For the measurement of flow direction in conditions of severe transverse total
pressure gradients, as would be experienced during the measurement of blade cascade
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FIG. 3.8. Contraction of streamlines due to boundary layer thickening (adapted from
Carter et al. 1950).



flows, quite substantial errors in the measurement of flow direction do arise. Figure
3.10 indicates the apparent flow angle variation measured by these same three types of
pressure probe when traversed across a transverse gradient of total pressure caused by
a compressor stator blade. It is clear that the wedge probe is the least affected by the
total pressure gradient. An investigation by Dixon (1978) did confirm that all pressure
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FIG. 3.9. Some combination pressure probes (adapted from Bryer and Pankhurst
1971): (a) claw probe; (b) chamfered tube probe; (c) wedge probe.



probe instruments are subject to this type of directional error when traversed across a
total pressure variation such as a blade wake.

An extensive bibliography on all types of measurement in fluid flow is given by
Dowden (1972). Figure 3.11 shows a typical cascade test result from a traverse across
two blade pitches taken by Todd (1947) at an inlet Mach number of 0.6. It is observed
that a total pressure deficit occurs across the blade row arising from the fluid friction
on the blades. The fluid deflection is not uniform and is a maximum at each blade trail-
ing edge on the pressure side of the blades. From such test results, average values of
total pressure loss and fluid outlet angle are found (usually on a mass flow basis). The
use of terms like total pressure loss and fluid outlet angle in the subsequent discussion
will signify these average values.

Similar tests performed for a range of fluid inlet angles, at the same inlet Mach
number M1 and Reynolds number Re, enables the complete performance of the cascade
to be determined (at that M1 and Re). So as to minimise the amount of testing required,
much cascade work is performed at low inlet velocities, but at a Reynolds number
greater than the “critical” value. This critical Reynolds number Rec is approximately 2
¥ 105 based on inlet velocity and blade chord. With Re > Rec, total pressure losses and
fluid deflections are only slightly dependent on changes in Re. Mach number effects
are negligible when M1 < 0.3. Thus, the performance laws, eqn. (3.28), for this flow
simplify to

(3.28a)
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FIG. 3.10. Apparent flow angle variation measured by three different combination
probes traversed across a transverse variation of total pressure (adapted from Bryer

and Pankhurst 1971).



There is a fundamental difference between the flows in turbine cascades and those
in compressor cascades which needs emphasising. A fluid flowing through a channel
in which the mean pressure is falling (mean flow is accelerating) experiences a rela-
tively small total pressure loss in contrast with the mean flow through a channel in
which the pressure is rising (diffusing flow) when losses may be high. This character-
istic difference in flow is reflected in turbine cascades by a wide range of low loss 
performance and in compressor cascades by a rather narrow range.

Compressor cascade performance
A typical set of low-speed compressor cascade test results (Howell 1942) for a spe-

cific geometry is shown in Fig. 3.12a. This type of data is derived from many pitch-
wise traverses, over a range of incidences, using pressure probes such as those described
in the previous section. Traverse measurements are usually made in a plane parallel to
the blade exit plane at about a quarter chord downstream. The data from each traverse
are processed following a procedure described by several authors, e.g. Horlock (1966),
and the procedure is not repeated here.
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FIG. 3.11. A sample plot of inlet and outlet stagnation pressures and fluid outlet angle
(adapted from Todd 1947).



There is a pronounced increase in total pressure loss as the incidence rises beyond a
certain value and the cascade is stalled in this region. The precise incidence at which
stalling occurs is difficult to define and a stall point is arbitrarily specified as the inci-
dence at which the total pressure loss is twice the minimum loss in total pressure.
Physically, stall is characterised (at positive incidence) by the flow separating from the
suction side of the blade surfaces. With decreasing incidence, total pressure losses again
rise and a “negative incidence” stall point can also be defined as above. The working
range is conventionally defined as the incidence range between these two limits at
which the losses are twice the minimum loss. Accurate knowledge of the extent of the
working range, obtained from two-dimensional cascade tests, is of great importance
when attempting to assess the suitability of blading for changing conditions of 
operation. A reference incidence angle can be most conveniently defined either at the
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FIG. 3.12. (a) Compressor cascade characteristics (Howell 1942). (By courtesy of the
Controller of H.M.S.O., Crown copyright reserved.) (b) True variation of total pressure

loss versus incidence angle—a replot of the data in (a).



midpoint of the working range or, less precisely, at the minimum loss condition. These
two conditions do not necessarily give the same reference incidence.

The results presented by Howell are in the form of a total pressure loss coefficient,
i.e. w = Dp0/(

1–
2 rc1

2) and the fluid deflection angle e = a1 - a2 both plotted against the
incidence angle i = a1 - a ¢1 (refer to Fig. 3.2 for the nomenclature). The incidence angle
(or the flow inlet angle, a1) corresponding to the minimum total pressure loss is of some
concern to the compressor designer. The true variation of Dp0 cannot be determined
directly from Fig. 3.12a because the denominator, 1–

2 rc1
2, varies with incidence. As sug-

gested by Lewis (1996) it would have been more practicable to non-dimensionalise Dp0

with 1–
2 rcx

2 and replot the result.
From eqn. (3.7) we obtain

The result of this recalculation is shown in Fig. 3.12b as z versus i, from which it is
seen that the minimum total pressure loss actually occurs at i = -10deg.

From such cascade test results the profile losses through compressor blading of the
same geometry may be estimated. To these losses estimates of the annulus skin fric-
tion losses and other secondary losses must be added and from which the efficiency of
the compressor blade row may be determined. Howell (1945a) suggested that these
losses could be estimated using the following drag coefficients. For the annulus walls
loss,

(3.29a)

and for the so-called secondary loss,

(3.29b)

where s, H are the blade pitch and blade length respectively, and CL the blade lift 
coefficient. Calculations of this type were made by Howell and others to estimate the
efficiency of a complete compressor stage. A worked example to illustrate the details
of the method is given in Chapter 5. Figure 3.13 shows the variation of stage efficiency
with flow coefficient and it is of particular interest to note the relative magnitude of the
profile losses in comparison with the overall losses, especially at the design point.

Cascade performance data, to be easily used, are best presented in some condensed
form. Several methods of empirically correlating low-speed performance data have
been developed in Great Britain. Howell’s correlation (1942) relates the performance
of a cascade to its performance at a “nominal” condition defined at 80% of the stalling
deflection. Carter (1950) has referred performance to an optimum incidence given by
the highest lift–drag ratio of the cascade. In the United States, the National Advisory
Committee for Aeronautics (NACA), now called the National Aeronautics and Space
Administration (NASA), systematically tested whole families of different cascade
geometries, in particular, the widely used NACA 65 Series (Herrig, Emery and Erwin
1957). The data on the NACA 65 Series has been usefully summarised by Felix (1957)
where the performance of a fixed geometry cascade can be more readily found. A
concise summary is also given by Horlock (1958).
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Turbine cascade performance
Figure 3.14 shows results obtained by Ainley (1948) from two sets of turbine cascade

blades, impulse and “reaction”. The term reaction is used here to denote, in a qualita-
tive sense, that the fluid accelerates through the blade row and thus experiences a pres-
sure drop during its passage. There is no pressure change across an impulse blade row.
The performance is expressed in the form l = Dpo/(po2 - p2) and a2 against incidence.

From these results it is observed that

(i) the reaction blades have a much wider range of low loss performance than the
impulse blades, a result to be expected as the blade boundary layers are subjected
to a favourable pressure gradient,

(ii) the fluid outlet angle a2 remains relatively constant over the whole range of 
incidence in contrast with the compressor cascade results.

For turbine cascade blades, a method of correlation is given by Ainley and Mathieson
(1951) which enables the performance of a gas turbine to be predicted with an esti-
mated tolerance of within 2% on peak efficiency. In Chapter 4 a rather different
approach, using a method attributed to Soderberg, is outlined. While being possibly
slightly less accurate than Ainley’s correlation, Soderberg’s method employs fewer
parameters and is rather easier to apply.

Compressor cascade correlations
Many experimental investigations have confirmed that the efficient performance of

compressor cascade blades is limited by the growth and separation of the blade surface
boundary layers. One of the aims of cascade research is to establish the generalised
loss characteristics and stall limits of conventional blades. This task is made difficult
because of the large number of factors which can influence the growth of the blade
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FIG. 3.13. Losses in a compressor stage (Howell 1945a and 1945b). (Courtesy of the
Institution of Mechanical Engineers).



surface boundary layers, viz. surface velocity distribution, blade Reynolds number, inlet
Mach number, free-stream turbulence and unsteadiness, and surface roughness. From
the analysis of experimental data several correlation methods have been evolved which
enable the first-order behaviour of the blade losses and limiting fluid deflection to be
predicted with sufficient accuracy for engineering purposes.

LIEBLEIN. The correlation of Lieblein (1959), NASA (1965) is based on the experi-
mental observation that a large amount of velocity diffusion on blade surfaces tends to
produce thick boundary layers and eventual flow separation. Lieblein states the general
hypothesis that in the region of minimum loss, the wake thickness, and consequently
the magnitude of the loss in total pressure, is proportional to the diffusion in velocity
on the suction surface of the blade in that region. The hypothesis is based on the con-
sideration that the boundary layer on the suction surface of conventional compressor
blades contributes the largest share of the blade wake. Therefore, the suction-surface
velocity distribution becomes the main factor in determining the total pressure loss.

Figure 3.15 shows a typical velocity distribution derived from surface pressure mea-
surements on a compressor cascade blade in the region of minimum loss. The diffu-
sion in velocity may be expressed as the ratio of maximum suction-surface velocity to
outlet velocity, cmax,s /c2. Lieblein found a correlation between the diffusion ratio cmax,s/c2

and the wake momentum thickness to chord ratio, q2/l at the reference incidence (mid-
point of working range) for American NACA 65-(A10) and British C.4 circular-arc
blades. The wake momentum thickness, with the parameters of the flow model in Figure
3.16 is defined as

Two-dimensional Cascades 73

FIG. 3.14. Variation in profile loss with incidence for typical turbine blades (adapted
from Ainley 1948).



(3.30)

The Lieblein correlation, with his data points removed for clarity, is closely fitted by
the mean curve in Figure 3.17. This curve represents the equation

(3.31)

which may be more convenient to use in calculating results. It will be noticed that for
the limiting case when (q2/1) Æ •, the corresponding upper limit for the diffusion ratio
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FIG. 3.15. Compressor cascade blade surface velocity distribution.

FIG. 3.16. Model variation in velocity in a plane normal to axial direction.



cmax,s /c2 is 2.35. The practical limit of efficient operation would correspond to a diffu-
sion ratio of between 1.9 and 2.0.

Losses are usually expressed in terms of the stagnation pressure loss coefficient w– =
Dp0 /( 1–

2 rc1
2) or z = Dp0 /( 1–

2 rcx
2) as well as the drag coefficient CD. Lieblein and Roudebush

(1956) have demonstrated the simplified relationship between momentum–thickness
ratio and total pressure-loss coefficient, valid for unstalled blades,

(3.32)

Combining this relation with eqns. (3.7) and (3.17) the following useful results can be
obtained:

(3.33)

The correlation given above assumes a knowledge of suction-surface velocities in
order that total pressure loss and stall limits can be estimated. As these data may be
unavailable it is necessary to establish an equivalent diffusion ratio, approximately
equal to cmax,s /c2, that can be easily calculated from the inlet and outlet conditions of
the cascade. An empirical correlation was established by Lieblein (1959) between a 
circulation parameter defined by f (G) = Gcosa1/(lc1) and cmax,s /c1 at the reference 
incidence, where the ideal circulation G = s(cy1 - cy2), using eqn. (3.23). The correla-
tion obtained is the simple linear relation,

(3.34)

which applies to both NACA 65-(A10) and C.4 circular arc blades. Hence, the equiva-
lent diffusion ratio, after substituting for G and simplifying, is
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FIG. 3.17. Mean variation of wake momentum thickness–chord ratio with suction-
surface diffusion ratio at reference incidence condition for NACA 65-(C10A10)10 blades

and British C.4 circular-arc blades (adapted from Lieblein 1959).



(3.35)

At incidence angles greater than reference incidence, Lieblein found that the following
correlation was adequate:

(3.36)

where k = 0.0117 for the NACA 65-(A10) blades and k = 0.007 for the C.4 circular arc
blades.

The expressions given above are still very widely used as a means of estimating total
pressure loss and the unstalled range of operation of blades commonly employed in
subsonic axial compressors. The method has been modified and extended by Swann to
include the additional losses caused by shock waves in transonic compressors. The dis-
cussion of transonic compressors is outside the scope of this text and is not included.

HOWELL. The low-speed correlation of Howell (1942) has been widely used by
designers of axial compressors and is based on a nominal condition such that the deflec-
tion e* is 80% of the stalling deflection, es (Figure 3.12). Choosing e* = 0.8es as the
design condition represents a compromise between the ultraconservative and the
overoptimistic! Howell found that the nominal deflections of various compressor cas-
cades are, primarily, a function of the space–chord ratio s/l, the nominal fluid outlet
angle a*2 and the Reynolds number Re

(3.37)

It is important to note that the correlation (which is really a correlation of stalling deflec-
tion, es = 1.25e*) is virtually independent of blade camber q in the normal range of
choice of this parameter (20° < q < 40°). Figure 3.18 shows the variation of e* found
by Howell (1945a and 1945b) against a*2 for several space–chord ratios. The depen-
dence on Reynolds number is small for Re > 3 ¥ 105, based on blade chord.

An approximating formula to the data given in Figure 3.18, which was quoted by
Howell and frequently found to be useful in preliminary performance estimation, is the
tangent-difference rule:

(3.38)

which is applicable in the range 0 � a*2 � 40°.

Fluid deviation

The difference between the fluid and blade inlet angles at cascade inlet is under the
arbitrary control of the designer. At cascade outlet however, the difference between the
fluid and blade angles, called the deviation d, is a function of blade camber, blade shape,
space–chord ratio and stagger angle. Referring to Figure 3.2, the deviation d = a2 - a ¢2
is drawn as positive; almost without exception it is in such a direction that the deflec-
tion of the fluid is reduced. The deviation may be of considerable magnitude and it is
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important that an accurate estimate is made of it. Re-examining Figure 3.11, it will be
observed that the fluid receives its maximum guidance on the pressure side of the
cascade channel and that this diminishes almost linearly towards the suction side of the
channel.

Howell used an empirical rule to relate nominal deviation d* to the camber and
space–chord ratio,

(3.39)

where n �
1–
2 for compressor cascades and n � 1 for compressor inlet guide vanes.

The value of m depends upon the shape of the camber line and the blade setting. For
a compressor cascade (i.e. diffusing flow),

(3.40a)

where a is the distance of maximum camber from the leading edge. For the inlet guide
vanes, which are essentially turbine nozzles (i.e. accelerating flow),

(3.40b)

EXAMPLE 3.1. A compressor cascade has a space–chord ratio of unity and blade inlet
and outlet angles of 50deg and 20deg respectively. If the blade camber line is a cir-
cular arc (i.e. a/l = 50%) and the cascade is designed to operate at Howell’s nominal
condition, determine the fluid deflection, incidence and ideal lift coefficient at the
design point.

Solution. The camber, q = a ¢1 - a ¢2 = 30deg. As a first approximation put a*2
= 20deg in eqn. (3.40) to give m = 0.27 and, using eqn. (3.39), d* = 0.27 ¥ 30 =
8.1deg. As a better approximation put a*2 = 28.1deg in eqn. (3.40) giving m = 0.2862
and d* = 8.6deg. Thus, a*2 = 28.6deg is sufficiently accurate.
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FIG. 3.18. Variation of nominal deflection with nominal outlet angle for several
space–chord ratios (adapted from Howell 1945a and 1945b).



From Figure 3.16, with s/l = 1.0 and a*2 = 28.6deg obtain e* = a*1 - a*2 = 21deg.
Hence a*1 = 49.6deg and the nominal incidence i* = a*1 - a ¢1 = -0.4deg.

The ideal lift coefficient is found by setting CD = 0 in eqn. (3.18),

Putting a1 = a*1, a2 = a*2 and noting tana*m = 1–
2 (tana*1 + tana*2) obtain a*m = 40.75deg

and C*L = 2(1.172 - 0.545)0.758 � 0.95.
In conclusion it will be noted that the estimated deviation is one of the most impor-

tant quantities for design purposes, as small errors in it are reflected in large changes
in deflection and, thus, in predicted performance.

Off-design performance

To obtain the performance of a given cascade at conditions removed from the design
point, generalised performance curves of Howell (1942) shown in Figure 3.19 may be
used. If the nominal deflection e* and nominal incidence i* are known the off-design
performance (deflection, total pressure loss coefficient) of the cascade at any other inci-
dence is readily calculated.

EXAMPLE 3.2. In the previous exercise, with a cascade of s/l = 1.0, a¢1 = 50deg and
a¢2 = 20deg the nominal conditions were e* = 21deg and i* = -0.4deg.

Determine the off-design performance of this cascade at an incidence i = 3.8deg.

Solution. Referring to Figure 3.19 and with (i - i*)/e* = 0.2 obtain CD � 0.017,
e/e* = 1.15. Thus, the off-design deflection, e = 24.1deg.

From eqn. (3.17), the total pressure loss coefficient is

Now a1 = a ¢1 + i = 53.8deg, also a2 = a1 - e = 29.7deg, therefore,

hence

The tangential lift force coefficient, eqn. (3.9), is

The diffuser efficiency, eqn. (3.25), is

It is worth nothing, from the representative data contained in the above exercise, that
the validity of the approximation in eqn. (3.20) is amply justified.

Howell’s correlation, clearly, is a simple and fairly direct method of assessing the
performance of a given cascade for a range of inlet flow angles. The data can also be
used for solving the more complex inverse problem, namely, the selection of a suitable
cascade geometry when the fluid deflection is given. For this case, if the previous
method of a nominal design condition is used, mechanically unsuitable space–chord
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ratios are a possibility. The space–chord ratio may, however, be determined to some
extent by the mechanical layout of the compressor, the design incidence then only for-
tuitously coinciding with the nominal incidence. The design incidence is therefore
somewhat arbitrary and some designers, ignoring nominal design conditions, may select
an incidence best suited to the operating conditions under which the compressor will
run. For instance, a negative design incidence may be chosen so that at reduced flow
rates a positive incidence condition is approached.

Mach number effects

High-speed cascade characteristics are similar to those at low speed until the criti-
cal Mach number Mc is reached, after which the performance declines. Figure 3.20,
taken from Howell (1942) illustrates for a particular cascade tested at varying Mach
number and fixed incidence, the drastic decline in pressure rise coefficient up to the
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FIG. 3.19. The off-design performance of a compressor cascade (Howell 1942). (By
courtesy of the Controller of H.M.S.O., Crown copyright reserved).



maximum Mach number at entry Mm, when the cascade is fully choked. When the
cascade is choked, no further increase in mass flow through the cascade is possible.
The definition of inlet critical Mach number is less precise, but one fairly satisfactory
definition (Horlock 1958) is that the maximum local Mach number in the cascade has
reached unity.

Howell attempted to correlate the decrease in both efficiency and deflection in the
range of inlet Mach numbers, Mc � M � Mm and these are shown in Figure 3.21. By
employing this correlation, curves similar to that in Figure 3.20 may be found for each
incidence.

One of the principal aims of high-speed cascade testing is to obtain data for deter-
mining the values of Mc and Mm. Howell (1945a) indicates how, for a typical cascade,
Mc and Mm vary with incidence (Figure 3.22).

Fan blade design (McKenzie)
The cascade tests and design methods evolved by Howell, Carter and others, which

were described earlier, established the basis of British axial compressor design.
However, a number of empirical factors had to be introduced into the methods in order
to correlate actual compressor performance with the performance predicted from
cascade data. The system has been in use for many years and has been gradually 
modified and improved during this time.

McKenzie (1980) has described work done at Rolls-Royce to further develop 
the correlation of cascade and compressor performance. The work was done on a low-
speed four-stage compressor with 50% reaction blading of constant section. The 
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FIG. 3.20. Variation of cascade pressure rise coefficient with inlet Mach number
(Howell 1942). (By courtesy of the Controller of H.M.S.O., Crown copyright reserved).
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FIG. 3.21. Variation of efficiency and deflection with Mach number (adapted from
Howell 1942).

FIG. 3.22. Dependence of critical and maximum Mach numbers upon incidence
(Howell 1945a). (By courtesy of the Institution of Mechanical Engineers).



compressor hub to tip radius ratio was 0.8 and a large number of combinations of
stagger and camber was tested.

McKenzie pointed out that the deviation rule originated by Howell (1945), i.e. eqns.
(3.39) and (3.40a) with n = 0.5, was developed from cascade tests performed without
sidewall suction. Earlier in this chapter it was explained that the consequent thicken-
ing of the sidewall boundary layers caused a contraction of the main through-flow
(Figure 3.8), resulting in a reduced static pressure rise across the cascade and an
increased air deflection. Rolls-Royce conducted a series of tests on C5 profiles with
circular arc camber lines using a number of wall suction slots to control the axial veloc-
ity ratio (AVR). The deviation angles at mid-span with an AVR of unity were found to
be significantly greater than those given by eqn. (3.39).

From cascade tests McKenzie derived the following rule for the deviation angle:

(3.41)

where d and q are in degrees. From the results a relationship between the blade stagger
angle x and the vector mean flow angle am was obtained:

(3.42)

where tanam is defined by eqn. (3.6). The significance of eqn. (3.42) is that, if the air
inlet and outlet angles (a1 and a2 respectively) are specified, then the stagger angle for
maximum efficiency can be determined, assuming that a C5 profile (or a similar profile
such as C4) on a circular arc camber line is being considered. Of course, the camber
angle q and the pitch–chord ratio s/l still need to be determined.

In a subsequent paper McKenzie (1988) gave a graph of efficiency in terms of Cpi

and s/l, which was an improved presentation of the correlation given in his earlier paper.
The ideal static pressure rise coefficient is defined as

(3.43)

McKenzie’s efficiency correlation is shown in Figure 3.23, where the ridge line of
optimum efficiency is given by

(3.44)
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EXAMPLE 3.3. At the midspan of a proposed fan stator blade the inlet and outlet air
angles are to be a1 = 58° and a2 = 44°. Using the data and correlation of McKenzie,
determine a suitable blade camber and space–chord ratio.

Solution. From eqn. (3.6) the vector mean flow angle is found,

From eqn. (3.42) we get the stagger angle,

Thus, am = 52.066° and x = 46.937°.
From eqn. (3.43), assuming that AVR = 1.0, we find

Using the optimum efficiency correlation, eqn. (3.44),

To determine the blade camber we combine

with eqn. (3.41) to get

According to McKenzie the correlation gives, for high stagger designs, peak efficiency
conditions well removed from stall and is in good agreement with earlier fan blade
design methods.

Turbine cascade correlation (Ainley and Mathieson)
Ainley and Mathieson (1951) reported a method of estimating the performance of

an axial flow turbine and the method has been widely used ever since. In essence the
total pressure loss and gas efflux angle for each row of a turbine stage is determined at
a single reference diameter and under a wide range of inlet conditions. This reference
diameter was taken as the arithmetic mean of the rotor and stator rows’ inner and outer
diameters. Dunham and Came (1970) gathered together details of several improvements
to the method of Ainley and Mathieson which gave better performance prediction for
small turbines than did the original method. When the blading is competently designed
the revised method appears to give reliable predictions of efficiency to within 2% over
a wide range of designs, sizes and operating conditions.
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Total pressure loss correlations

The overall total pressure loss is composed of three parts, viz. (i) profile loss, (ii)
secondary loss, and (iii) tip clearance loss.

(i) A profile loss coefficient is defined as the loss in stagnation pressure across the
blade row or cascade, divided by the difference between stagnation and static pressures
at blade outlet; i.e.

(3.45)

In the Ainley and Mathieson method, profile loss is determined initially at zero inci-
dence (i = 0). At any other incidence the profile loss ratio Yp /Yp(i=0) is assumed to be
defined by a unique function of the incidence ratio i/is (Figure 3.24), where is is the
stalling incidence. This is defined as the incidence at which Yp /Yp(i=0) = 2.0.

Ainley and Mathieson correlated the profile losses of turbine blade rows against
space–chord ratio s/l, fluid outlet angle a2, blade maximum thickness–chord ratio t/l
and blade inlet angle. The variation of Yp(i=0) against s/l is shown in Figure 3.25 for
nozzles and impulse blading at various flow outlet angles. The sign convention used
for flow angles in a turbine cascade is indicated in Figure 3.27. For other types of
blading intermediate between nozzle blades and impulse blades the following expres-
sion is employed:

(3.46)
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FIG. 3.24. Variation of profile loss with incidence for typical turbine blading (adapted
from Ainley and Mathieson 1951).



where all the values of Yp are taken at the same space–chord ratio and flow outlet 
angle. If rotor blades are being considered, put 3b2 for a1 and b3 for a2. Equation 
(3.46) includes a correction for the effect of thickness–chord ratio and is valid in 
the range 0.15 � t/l � 0.25. If the actual blade has a t/l greater or less than the 
limits quoted, Ainley recommends that the loss should be taken as equal to a blade
having t/l either 0.25 or 0.15. By substituting a1 = a2 and t/l = 0.2 in eqn. (3.46), 
the zero incidence loss coefficient for the impulse blades Yp(a1=a2) given in Figure 
3.25 is recovered. Similarly, with a1 = 0 at t/l = 0.2 in eqn. (3.46) gives Yp(a1= 0) of Figure
3.25.

A feature of the losses given in Figure 3.25 is that, compared with the impulse 
blades, the nozzle blades have a much lower loss coefficient. This trend confirms 
the results shown in Figure 3.14, that flow in which the mean pressure is falling 
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FIG. 3.25. Profile loss coefficients of turbine nozzle and impulse blades at zero
incidence (t /l = 20%; Re = 2 ¥ 105; M < 0.6) (adapted from Ainley and Mathieson 1951).



has a lower loss coefficient than a flow in which the mean pressure is constant or
increasing.

(ii) The secondary losses arise from complex three-dimensional flows set up as a
result of the end wall boundary layers passing through the cascade. There is substan-
tial evidence that the end wall boundary layers are convected inwards along the suction
surface of the blades as the main flow passes through the blade row, resulting in a
serious maldistribution of the flow, with losses in stagnation pressure often a signifi-
cant fraction of the total loss. Ainley and Mathieson found that secondary losses could
be represented by

(3.47)

where l is parameter which is a function of the flow acceleration through the blade
row. From eqn. (3.17), together with the definition of Y, eqn. (3.45) for incompressible
flow, CD = Y(s/l) cos3 am/cos2 a 2, hence

(3.48)

where Z is the blade aerodynamic loading coefficient. Dunham (1970) subsequently
found that this equation was not correct for blades of low aspect ratio, as in small tur-
bines. He modified Ainley and Mathieson’s result to include a better correlation with
aspect ratio and at the same time simplified the flow acceleration parameter. The cor-
relation, given by Dunham and Came (1970), is

(3.49)

and this represents a significant improvement in the prediction of secondary losses using
Ainley and Mathieson’s method.

Recently, more advanced methods of predicting losses in turbine blade rows have
been suggested which take into account the thickness of the entering boundary layers
on the annulus walls. Came (1973) measured the secondary flow losses on one end wall
of several turbine cascades for various thicknesses of inlet boundary layer. He corre-
lated his own results and those of several other investigators and obtained a modified
form of Dunham’s earlier result, viz.,

(3.50)

which is the net secondary loss coefficient for one end wall only and where Y1 is a
mass-averaged inlet boundary layer total pressure loss coefficient. It is evident that the
increased accuracy obtained by use of eqn. (3.50) requires the additional effort of cal-
culating the wall boundary layer development. In initial calculations of performance it
is probably sufficient to use the earlier result of Dunham and Came, eqn. (3.49), to
achieve a reasonably accurate result.

(iii) The tip clearance loss coefficient Yk depends upon the blade loading Z and the
size and nature of the clearance gap k. Dunham and Came presented an amended
version of Ainley and Mathieson’s original result for Yk:
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(3.51)

where B = 0.5 for a plain tip clearance, 0.25 for shrouded tips.

Reynolds number correction

Ainley and Mathieson (1951) obtained their data for a mean Reynolds number of 
2 ¥ 105 based on the mean chord and exit flow conditions from the turbine state. 
They recommended for lower Reynolds numbers, down to 5 ¥ 104, that a correction be
made to stage efficiency according to the rough rule

Dunham and Came (1970) gave an optional correction which is applied directly to the
sum of the profile and secondary loss coefficients for a blade row using the Reynolds
number appropriate to that row. The rule is

Flow outlet angle from a turbine cascade

It was pointed out by Ainley (1948) that the method of defining deviation angle as
adopted in several well-known compressor cascade correlations had proved to be
impracticable for turbine blade cascade. In order to predict fluid outlet angle a2, steam
turbine designers had made much use of the simple empirical rule that

(3.52a)

where Q is the opening at the throat, depicted in Figure 3.26, and s is the pitch. This
widely used rule gives a very good approximation to measured pitchwise averaged flow
angles when the outlet Mach number is at or close to unity. However, at low Mach
numbers substantial variations have been found between the rule and observed flow
angles. Ainley and Mathieson (1951) recommended that for low outlet Mach numbers
0 < M2 � 0.5, the following rule be used:
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FIG. 3.26. Details near turbine cascade exit showing “throat” and suction-surface
curvature parameters.



(3.52b)

where f (cos-1 Q/s) = -11.15 + 1.154cos-1 Q/s and e = j2/(8z) is the mean radius of cur-
vature of the blade suction surface between the throat and the trailing edge. At a gas outlet
Mach number of unity Ainley and Mathieson assumed, for a turbine blade row, that

(3.52c)

where At is the passage throat area and An2 is the annulus area in the reference plane
downstream of the blades. If the annulus walls at the ends of the cascade are not flared
then eqn. (3.52c) is the same as eqn. (3.52a). Between M2 = 0.5 and M2 = 1.0 a linear
variation of a2 can be reasonably assumed in the absence of any other data.

Comparison of the profile loss in a cascade 
and in a turbine stage

The aerodynamic efficiency of an axial-flow turbine is significantly less than that
predicted from measurements made on equivalent cascades operating under steady flow
conditions. The importance of flow unsteadiness originating from the wakes of a pre-
ceding blade row was studied by Lopatitskii et al. (1969) who reported that the rotor
blade profile loss was (depending on blade geometry and Reynolds number) between
two and four times greater than that for an equivalent cascade operating with the same
flow. Hodson (1984) made an experimental investigation of the rotor to stator interac-
tion using a large-scale, low-speed turbine, comparing the results with those of a rec-
tilinear cascade of identical geometry. Both tunnels were operated at a Reynolds number
of 3.15 ¥ 105. Hodson reported that the turbine rotor midspan profile loss was approx-
imately 50% higher than that of the rectilinear cascade. Measurements of the shear
stress showed that as a stator wake is convected through a rotor blade passage, the
laminar boundary layer on the suction surface undergoes transition in the vicinity of
the wake. The 50% increase in profile loss was caused by the time-dependent transi-
tional nature of the boundary layers. The loss increase was largely independent of
spacing between the rotor and the stator.

In a turbine stage the interaction between the two rows can be split into two parts:
(i) the effects of the potential flow; and (ii) the effects due to wake interactions. The
effects of the potential influence extend upstream and downstream and decay expo-
nentially with a length scale typically of the order of the blade chord or pitch. Some
aspects of these decay effects are studied in Chapter 6 under the heading “Actuator
Disc Approach”. In contrast, blade wakes are convected downstream of the blade row
with very little mixing with the mainstream flow. The wakes tend to persist even where
the blade rows of a turbomachine are very widely spaced.

A designer usually assumes that the blade rows of an axial-flow turbomachine are
sufficiently far apart that the flow is steady in both the stationary and rotating frames
of reference. The flow in a real machine, however, is unsteady both as a result of the
relative motion of the blade wakes between the blade rows and the potential influence.
In modern turbomachines, the spacing between the blade rows is typically of the order
of 1/4 to 1/2 of a blade chord. As attempts are made to make turbomachines more
compact and blade loadings are increased, the levels of unsteadiness will increase.
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The earlier Russian results showed that the losses due to flow unsteadiness were
greater in turbomachines of high reaction and low Reynolds number. With such designs,
a larger proportion of the blade suction surface would have a laminar boundary layer
and would then exhibit a correspondingly greater profile loss as a result of the wake-
induced boundary layer transition.

Optimum space–chord ratio of turbine blades (Zweifel)
It is worth pondering a little upon the effect of the space–chord ratio in turbine blade

rows as this is a factor strongly affecting efficiency. Now if the spacing between blades
is made small, the fluid then tends to receive the maximum amount of guidance from
the blades, but the friction losses will be very large. On the other hand, with the same
blades spaced well apart, friction losses are small but, because of poor fluid guidance,
the losses resulting from flow separation are high. These considerations led Zweifel
(1945) to formulate his criterion for the optimum space–chord ratio of blading having
large deflection angles. Essentially, Zweifel’s criterion is simply that the ratio (yT)
of the actual to an “ideal” tangential blade loading has a certain constant value for
minimum losses. The tangential blade loads are obtained from the real and ideal pres-
sure distributions on both blade surfaces, as described below.

Figure 3.27 indicates a typical pressure distribution around one blade in a turbine
cascade, curves P and S corresponding to the pressure (or concave) side and suction
(convex) side respectively. The pressures are projected parallel to the cascade front so
that the area enclosed between the curves S and P represents the actual tangential blade
load per unit span,

(3.53)

cf. eqn. (3.3) for a compressor cascade.
It is instructive to examine the pressures along the blade surfaces. Assuming incom-

pressible flow the static inlet pressure is p1 = p0 - 1–
2 rc1

2; if losses are also ignored the
outlet static pressure p2 = p0 - 1–

2
rc2

2. The pressure on the P side remains high at first
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FIG. 3.27. Pressure distribution around a turbine cascade blade (after Zweifel 1945).



(p0 being the maximum, attained only at the stagnation point), then falls sharply to p2.
On the S side there is a rapid decrease in static pressure from the leading edge, but it
may even rise again towards the trailing edge. The closer the blade spacing s the smaller
the load Y becomes (eqn. (3.53)). Conversely, wide spacing implies an increased load
with pressure rising on the P side and falling on the S side. Now, whereas the static
pressure can never rise above p0 on the P surface, very low pressures are possible, at
least in theory on the S surface. However, the pressure rise towards the trailing edge is
limited in practice if flow separation is to be avoided, which implies that the load carried
by the blade is restricted.

To give some idea of blade load capacity, the real pressure distribution is compared
with an ideal pressure distribution giving a maximum load Yid without risk of fluid sep-
aration on the S surface. Upon reflection, one sees that these conditions for the ideal
load are fulfilled by p0 acting over the whole P surface and p2 acting over the whole S
surface. With this ideal pressure distribution (which cannot, of course, be realised), the
tangential load per unit span is,

(3.54)

and, therefore,

(3.55)

after combining eqns. (3.53) and (3.54) together with angles defined by the geometry
of Figure 3.27.

Zweifel found from a number of experiments on turbine cascades that for minimum
losses the value of yT was approximately 0.8. Thus, for specified inlet and outlet angles
the optimum space–chord ratio can be estimated. However, according to Horlock
(1966), Zweifel’s criterion predicts optimum space–chord ratio for the data of Ainley
and Mathieson only for outlet angles of 60 to 70deg. At other outlet angles it does not
give an accurate estimate of optimum space–chord ratio.
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Problems

1. Experimental compressor cascade results suggest that the stalling lift coefficient of a
cascade blade may be expressed as

where c1 and c2 are the entry and exit velocities. Find the stalling inlet angle for a compressor
cascade of space–chord ratio unity if the outlet air angle is 30deg.

2. Show, for a turbine cascade, using the angle notation of Figure 3.27, that the lift coeffi-
cient is

where tanam = 1–
2 (tana2 - tana1) and CD = Drag/( 1–

2 rc2
ml).

A cascade of turbine nozzle vanes has a blade inlet angle a ¢1 = 0deg, a blade outlet angle a ¢2
of 65.5deg, a chord length l of 45mm and an axial chord b of 32mm. The flow entering the
blades is to have zero incidence and an estimate of the deviation angle based upon similar cas-
cades is that d will be about 1.5deg at low outlet Mach number. If the blade load ratio yT defined
by eqn. (3.55) is to be 0.85, estimate a suitable space–chord ratio for the cascade.

Determine the drag and lift coefficients for the cascade given that the profile loss coefficient

3. A compressor cascade is to be designed for the following conditions:

Nominal fluid outlet angle a*2 = 30deg
Cascade camber angle q = 30deg
Pitch/chord ratio s/l = 1.0
Circular arc camberline a/l = 0.5

Using Howell’s curves and his formula for nominal deviation, determine the nominal incidence,
the actual deviation for an incidence of +2.7deg and the approximate lift coefficient at this 
incidence.

4. A compressor cascade is built with blades of circular arc camber line, a space–chord ratio
of 1.1 and blade angles of 48 and 21deg at inlet and outlet. Test data taken from the cascade
shows that at zero incidence (i = 0) the deviation d = 8.2deg and the total pressure loss coeffi-
cient w̄ = Dp0 /( 1–

2 rc1
2) = 0.015. At positive incidence over a limited range (0 � i � 6°) the vari-

ation of both d and w– for this particular cascade can be represented with sufficient accuracy by
linear approximations, viz.

where i is in degrees.
For a flow incidence of 5.0deg determine

(i) the flow angles at inlet and outlet;
(ii) the diffuser efficiency of the cascade;

(iii) the static pressure rise of air with a velocity 50m/s normal to the plane of the cascade. 

Assume density of air is 1.2kg/m3.

5. (a) A cascade of compressor blades is to be designed to give an outlet air angle a2 of
30deg for an inlet air angle a1 of 50deg measured from the normal to the plane of the cascade.
The blades are to have a parabolic arc camber line with a/l = 0.4 (i.e. the fractional distance
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along the chord to the point of maximum camber). Determine the space–chord ratio and blade
outlet angle if the cascade is to operate at zero incidence and nominal conditions. You may assume
the linear approximation for nominal deflection of Howell’s cascade correlation:

as well as the formula for nominal deviation:

(b) The space–chord ratio is now changed to 0.8, but the blade angles remain as they are
in part (a) above. Determine the lift coefficient when the incidence of the flow is 2.0deg. Assume
that there is a linear relationship between Œ/Œ* and (i - i*)/Œ* over a limited region, viz. at (i
- i*)/Œ* = 0.2, Œ/Œ* = 1.15 and at i = i*, Œ/Œ* = 1. In this region take CD = 0.02.

6. (a) Show that the pressure rise coefficient Cp = Dp/( 1–
2 rc1

2) of a compressor cascade is
related to the diffuser efficiency hD and the total pressure loss coefficient z by the following
expressions:

where

(b) Determine a suitable maximum inlet flow angle of a compressor cascade having a
space–chord ratio 0.8 and a2 = 30deg when the diffusion factor D is to be limited to 0.6. The
definition of diffusion factor which should be used is the early Lieblein formula (1953),

(c) The stagnation pressure loss derived from flow measurements on the above cascade 
is 149Pa when the inlet velocity c1 is 100 m/s at an air density r of 1.2kg/m3. Determine the
values of

(i) pressure rise;
(ii) diffuser efficiency;

(iii) drag and lift coefficients.

7. (a) A set of circular arc fan blades, camber q = 8deg, are to be tested in a cascade wind
tunnel at a space–chord ratio, s/l = 1.5, with a stagger angle x = 68deg. Using McKenzie’s method
of correlation and assuming optimum conditions at an axial velocity ratio of unity, obtain values
for the air inlet and outlet angles.

(b) Assuming the values of the derived air angles are correct and that the cascade has an
effective lift–drag ratio of 18, determine

(i) the coefficient of lift of the blades;
(ii) the efficiency of the cascade (treating it as a diffuser).
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CHAPTER 4

Axial-flow Turbines: 
Two-dimensional Theory
Power is more certainly retained by wary measures than by daring counsels.
(TACITUS, Annals.)

Introduction
The simplest approach to the study of axial-flow turbines (and also axial-flow com-

pressors) is to assume that the flow conditions prevailing at the mean radius fully rep-
resent the flow at all other radii. This two-dimensional analysis at the pitchline can
provide a reasonable approximation to the actual flow, if the ratio of blade height to
mean radius is small. When this ratio is large, however, as in the final stages of a steam
turbine or in the first stages of an axial compressor, a three-dimensional analysis is
required. Some important aspects of three-dimensional flows in axial turbomachines
are discussed in Chapter 6. Two further assumptions are that radial velocities are zero
and that the flow is invariant along the circumferential direction (i.e. there are no “blade-
to-blade” flow variations).

In this chapter the presentation of the analysis has been devised with compressible
flow effects in mind. This approach is then applicable to both steam and gas turbines
provided that, in the former case, the steam condition remains wholly within the vapour
phase (i.e. superheat region). Much early work concerning flows in steam turbine
nozzles and blade rows are reported in Stodola (1945), Kearton (1958) and Horlock
(1960).

Velocity diagrams of the axial turbine stage
The axial turbine stage comprises a row of fixed guide vanes or nozzles (often called

a stator row) and a row of moving blades or buckets (a rotor row). Fluid enters the
stator with absolute velocity c1 at angle a1 and accelerates to an absolute velocity c2 at
angle a2 (Figure 4.1). All angles are measured from the axial (x) direction. The sign
convention is such that angles and velocities as drawn in Figure 4.1 will be taken as
positive throughout this chapter. From the velocity diagram, the rotor inlet relative
velocity w2, at an angle b2, is found by subtracting, vectorially, the blade speed U from
the absolute velocity c2. The relative flow within the rotor accelerates to velocity w3 at
an angle b3 at rotor outlet; the corresponding absolute flow (c3, a3) is obtained by
adding, vectorially, the blade speed U to the relative velocity w3.
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The continuity equation for uniform, steady flow is

In two-dimensional theory of turbomachines it is usually assumed, for simplicity, that
the axial velocity remains constant i.e. cx1 = cx2 = cx3 = cx.

This must imply that

(4.1)

Thermodynamics of the axial turbine stage
The work done on the rotor by unit mass of fluid, the specific work, equals the 

stagnation enthalpy drop incurred by the fluid passing through the stage (assuming adi-
abatic flow), or

(4.2)

In eqn. (4.2) the absolute tangential velocity components (cy) are added, so as to
adhere to the agreed sign convention of Figure 4.1. As no work is done in the nozzle
row, the stagnation enthalpy across it remains constant and

(4.3)

Writing h0 = h + 1–
2 (cx

2 + cy
2) and using eqn. (4.3) in eqn. (4.2) we obtain,
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hence,

It is observed from the velocity triangles of Figure 4.1 that cy2 - U = wy2, cy3 +
U = wy3 and cy2 + cy3 = wy2 + wy3. Thus,

Add and subtract 1–
2 cx

2 to the above equation

(4.4)

Thus, we have proved that the relative stagnation enthalpy, h0rel = h + 1–
2 w2, remains

unchanged through the rotor of an axial turbomachine. It is implicitly assumed that no
radial shift of the streamlines occurs in this flow. In a radial flow machine a more
general analysis is necessary (see Chapter 7), which takes account of the blade speed
change between rotor inlet and outlet.

A Mollier diagram showing the change of state through a complete turbine stage,
including the effects of irreversibility, is given in Figure 4.2.

Through the nozzles, the state point moves from 1 to 2 and the static pressure
decreases from p1 to p2. In the rotor row, the absolute static pressure reduces (in general)
from p2 to p3. It is important to note that all the conditions contained in eqns. (4.2)–(4.4)
are satisfied in the figure.
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Stage losses and efficiency
In Chapter 2 various definitions of efficiency for complete turbomachines were given.

For a turbine stage the total-to-total efficiency is

At the entry and exit of a normal stage the flow conditions (absolute velocity and
flow angle) are identical, i.e. c1 = c3 and a1 = a3. If it is assumed that c3ss = c3, which is
a reasonable approximation, the total-to-total efficiency becomes

(4.5)

Now the slope of a constant pressure line on a Mollier diagram is (∂h/∂s)p = T,
obtained from eqn. (2.18). Thus, for a finite change of enthaply in a constant pressure
process, Dh � TDs and, therefore,

(4.6a)

(4.6b)

Noting, from Figure 4.2, that s3s - s3ss = s2 - s2s, the last two equations can be com-
bined to give

(4.7)

The effects of irreversibility through the stator and rotor are expressed by the dif-
ferences in static enthalpies, (h2 - h2s) and (h3 - h3s) respectively. Non-dimensional
enthalpy “loss” coefficients can be defined in terms of the exit kinetic energy from each
blade row. Thus, for the nozzle row,

(4.8a)

For the rotor row,

(4.8b)

Combining eqns. (4.7) and (4.8) with eqn. (4.5) gives

(4.9)

When the exit velocity is not recovered (in Chapter 2, examples of such cases are
quoted) a total-to-static efficiency for the stage is used.

(4.10)

where, as before, it is assumed that c1 = c3.
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In initial calculations or, in cases where the static temperature drop through the rotor
is not large, the temperature ratio T3/T2 is set equal to unity, resulting in the more con-
venient approximations,

(4.9a)

(4.10a)

So that estimates can be made of the efficiency of a proposed turbine stage as part
of the preliminary design process, some means of determining the loss coefficients 
is required. Several methods for doing this are available with varying degrees of 
complexity. The blade row method proposed by Soderberg (1949) and reported 
by Horlock (1966), although old, is still remarkably valid despite its simplicity. Ainley
and Mathieson (1951) correlated the profile loss coefficients for nozzle blades (which
give 100% expansion) and impulse blades (which give 0% expansion) against flow
deflection and pitch–chord ratio for stated values of Reynolds number and Mach
number. Details of their method are given in Chapter 3. For blading between 
impulse and reaction the profile loss is derived from a combination of the impulse 
and reaction profile losses (see eqn. (3.42)). Horlock (1966) has given a detailed 
comparison between these two methods of loss prediction. A refinement of the 
Ainley and Mathieson prediction method was later reported by Dunham and Came
(1970).

Various other methods of predicting the efficiency of axial flow turbines have 
been devised such as those of Craig and Cox (1971), Kacker and Okapuu (1982) 
and Wilson (1987). It was Wilson who, tellingly, remarked that despite the emergence
of “computer programs of great power and sophistication”, and “generally incor-
porating computational fluid dynamics”, that these have not yet replaced the 
preliminary design methods mentioned above. It is, clearly, essential for a design to
converge as closely as possible to an optimum configuration using preliminary design
methods before carrying out the final design refinements using computational fluid
dynamics.

Soderberg’s correlation
One method of obtaining design data on turbine blade losses is to assemble infor-

mation on the overall efficiencies of a wide variety of turbines, and from this calculate
the individual blade row losses. This system was developed by Soderberg (1949) from
a large number of tests performed on steam turbines and on cascades, and extended to
fit data obtained from small turbines with very low aspect ratio blading (small
height–chord). Soderberg’s method was intended only for turbines conforming to the
standards of “good design”, as discussed below. The method was used by Stenning
(1953) to whom reference can be made.

A paper by Horlock (1960) critically reviewed several different and widely used
methods of obtaining design data for turbines. His paper confirms the claim made for
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Soderberg’s correlation that, although based on relatively few parameters, it is of com-
parable accuracy with the best of the other methods.

Soderberg found that for the optimum space–chord ratio, turbine blade losses (with
“full admission” to the complete annulus) could be correlated with space–chord ratio,
blade aspect ratio, blade thickness–chord ratio and Reynolds number. Soderberg used
Zweifel’s criterion (see Chapter 3) to obtain the optimum space–chord ratio of turbine
cascades based upon the cascade geometry. Zweifel suggested that the aerodynamic
load coefficient yT should be approximately 0.8. Following the notation of Figure 4.1

(4.11)

The optimum space–chord ratio may be obtained from eqn. (4.11) for specified values
of a1 and a2.

For turbine blade rows operating at this load coefficient, with a Reynolds number of
105 and aspect ratio H/b = blade height–axial chord of 3, the “nominal” loss coefficient
z* is a simple function of the fluid deflection angle � = a1 + a2, for a given 
thickness–chord ratio (tmax/l). Values of z* are drawn in Figure 4.3 as a function of
deflection �, for several ratios of tmax/l. A frequently used analytical simplification of
this correlation (for tmax/l = 0.2), which is useful in initial performance calculations, is

(4.12)

This expression fits Soderberg’s curve (for tmax/l = 0.2) quite well for e � 120° but
is less accurate at higher deflections. For turbine rows operating at zero incidence,
which is the basis of Soderberg’s correlation, the fluid deflection is little different from
the blading deflection since, for turbine cascades, deviations are usually small. Thus,
for a nozzle row, � = �N = a ¢2 + a ¢1 and for a rotor row, � = �R = b ¢2 + b ¢3 can be used
(the prime referring to the actual blade angles).
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If the aspect ratio H/b is other than 3, a correction to the nominal loss coefficient z*
is made as follows:

for nozzles,

(4.13a)

for rotors,

(4.13b)

where z1 is the loss coefficient at a Reynolds number of 105.
A further correction can be made if the Reynolds number is different from 105. As

used in this section, Reynolds number is based upon exit velocity c2 and the hydraulic
mean diameter Dh at the throat section.

(4.14)

where

(N.B. Hydraulic mean diameter = 4 ¥ flow area ∏ wetted perimeter.)
The Reynolds number correction is

(4.15)

Soderberg’s method of loss prediction gives turbine efficiencies with an error of less
than 3% over a wide range of Reynolds number and aspect ratio when additional cor-
rections are included to allow for tip leakage and disc friction. An approximate cor-
rection for tip clearance may be incorporated by the simple expedient of multiplying
the final calculated stage efficiency by the ratio of “blade” area to total area (i.e. “blade”
area + clearance area).

Types of axial turbine design
The process of choosing the best turbine design for a given application 

usually involves juggling several parameters which may be of equal importance, for
instance, rotor angular velocity, weight, outside diameter, efficiency, so that the final
design lies within acceptable limits for each parameter. In consequence, a simple pre-
sentation can hardly do justice to the real problem. However, a consideration of the
factors affecting turbine efficiency for a simplified case can provide a useful guide to
the designer.

Consider the problem of selecting an axial turbine design for which the mean blade
speed U, the specific work DW, and the axial velocity cx, have already been selected.
The upper limit of blade speed is limited by stress; the limit on blade tip speed is roughly
450m/s although some experimental turbines have been operated at higher speeds. The
axial velocity is limited by flow area considerations. It is assumed that the blades are
sufficiently short to treat the flow as two-dimensional.

The specific work done is

D sH s Hh = +( )2 2 2cos cos .a a
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With DW, U and cx fixed the only remaining parameter required to completely define
the velocity triangles is cy2, since

(4.16)

For different values of cy2 the velocity triangles can be constructed, the loss coeffi-
cients determined and htt, hts calculated. In Shapiro et al. (1957) Stenning considered
a family of turbines each having a flow coefficient cx /U = 0.4, blade aspect ratio H/b
= 3 and Reynolds number Re = 105, and calculated htt, hts for stage loading factors
DW/U2 of 1, 2 and 3 using Soderberg’s correlation. The results of this calculation are
shown in Figure 4.4. It will be noted that these results relate to blading efficiency and
make no allowance for losses due to tip clearance and disc friction.

EXAMPLE 4.1. Verify the peak value of the total to static efficiency hts shown in
Figure 4.4 for the curve marked DW/U2 = 1, using Soderberg’s correlation and the same
data used by Stenning in Shapiro et al. (1957).

Solution. From eqn. (4.10a),

As DW = U2 = U(cy2 + Cy3) then as cy2 = U, cy3 = 0,
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The velocity triangles are symmetrical, so that a2 = b3. Also, �R = �N = a2 = 68.2°,

This value appears to be the same as the peak value of the efficiency curve DW/U2

= 1.0, in Figure 4.4.

Stage reaction
The classification of different types of axial turbine is more conveniently described

by the degree of reaction, or reaction ratio R, of each stage rather than by the ratio
cy2/U. As a means of description the term reaction has certain inherent advantages which
become apparent later. Several definitions of reaction are available; the classical defi-
nition is given as the ratio of the static pressure drop in the rotor to the static pressure
drop in the stage. However, it is more useful to define the reaction ratio as the static
enthalpy drop in the rotor to the static enthalpy drop in the stage because it then
becomes, in effect, a statement of the stage flow geometry. Thus,

(4.17)

If the stage is normal (i.e. c1 = c3), then

(4.18)

Using eqn. (4.4), h2 - h3 = 1–
2 (w3

2 + w2
2) and eqn. (4.18) gives

(4.19)

Assuming constant axial velocity through the stage

(4.20)

since, upon referring to Figure 4.1, it is seen that

(4.21)

Thus,

(4.22a)
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or

(4.22b)

after using eqn. (4.21).
If b3 = b2, the reaction is zero; if b3 = a2 the reaction is 50%. These two special cases

are discussed below in more detail.

Zero reaction stage

From the definition of reaction, when R = 0, eqn. (4.18) indicates that h2 = h3 and
eqn. (4.22a) that b2 = b3. The Mollier diagram and velocity triangles corresponding to
these conditions are sketched in Figure 4.5. Now as h02rel = h03rel and h2 = h3 for R = 0
it must follow, therefore, that w2 = w3. It will be observed from Figure 4.5 that, because
of irreversibility, there is a pressure drop through the rotor row. The zero reaction stage
is not the same thing as an impulse stage; in the latter case there is, by definition, no
pressure drop through the rotor. The Mollier diagram for an impulse stage is shown in
Figure 4.6 where it is seen that the enthalpy increases through the rotor. The implica-
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tion is clear from eqn. (4.18); the reaction is negative for the impulse turbine stage
when account is taken of the irreversibility.

50% reaction stage

The combined velocity diagram for this case is symmetrical as can be seen from
Figure 4.7, since b3 = a2. Because of the symmetry it is at once obvious that b2 = a3,
also. Now with R = 1–

2 , eqn. (4.18) implies that the enthalpy drop in the nozzle row
equals the enthalpy drop in the rotor, or

(4.23)

Figure 4.7 has been drawn with the same values of cx, U and DW, as in Figure 4.5 (zero
reaction case), to emphasise the difference in flow geometry between the 50% reaction
and zero reaction stages.

Diffusion within blade rows
Any diffusion of the flow through turbine blade rows is particularly undesirable and

must, at the design stage, be avoided at all costs. This is because the adverse pressure
gradient (arising from the flow diffusion) coupled with large amounts of fluid deflec-
tion (usual in turbine blade rows), makes boundary-layer separation more than merely
possible, with the result that large scale losses arise. A compressor blade row, on the
other hand, is designed to cause the fluid pressure to rise in the direction of flow, i.e.
an adverse pressure gradient. The magnitude of this gradient is strictly controlled in a
compressor, mainly by having a fairly limited amount of fluid deflection in each blade
row.

The comparison of the profile losses given in Figure 3.14 is illustrative of the unde-
sirable result of negative “reaction” in a turbine blade row. The use of the term reac-
tion here needs qualifying as it was only defined with respect to a complete stage. From
eqn. (4.22a) the ratio R/f can be expressed for a single row of blades if the flow angles
are known. The original data provided with Figure 3.14 gives the blade inlet angles for
impulse and reaction blades as 45.5 and 18.9deg respectively. Thus, the flow angles
can be found from Figure 3.14 for the range of incidence given, and R/f can be cal-
culated. For the reaction blades R/f decreases as incidence increases going from 0.36
to 0.25 as i changes from 0 to 10deg. The impulse blades, which it will be observed
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have a dramatic increase in blade profile loss, has R/f decreasing from zero to -0.25
in the same range of incidence.

It was shown above that negative values of reaction indicated diffusion of the rotor
relative velocity (i.e. for R < 0, w3 < w2). A similar condition which holds for diffusion
of the nozzle absolute velocity is that, if R > 1, c2 < c1.

Substituting tan b3 = tan a3 + U/cx into eqn. (4.22b) gives

(4.22c)

Thus, when a3 = a2, the reaction is unity (also c2 = c3). The velocity diagram for R = 1
is shown in Figure 4.8 with the same values of cx, U and DW used for R = 0 and R = 1–

2 .
It will be apparent that if R exceeds unity, then c2 < c1 (i.e. nozzle flow diffusion).

EXAMPLE 4.2. A single-stage gas turbine operates at its design condition with an
axial absolute flow at entry and exit from the stage. The absolute flow angle at nozzle
exit is 70deg. At stage entry the total pressure and temperature are 311kPa and 850°C
respectively. The exhaust static pressure is 100kPa, the total-to-static efficiency is 0.87
and the mean blade speed is 500m/s.

Assuming constant axial velocity through the stage, determine

(i) the specific work done;
(ii) the Mach number leaving the nozzle;

(iii) the axial velocity;
(iv) the total-to-total efficiency;
(v) the stage reaction.

Take Cp = 1.148kJ/(kg°C) and g = 1.33 for the gas.

Solution. (i) From eqn. (4.10), total-to-static efficiency is

Thus, the specific work is
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(ii) At nozzle exit the Mach number is

and it is necessary to solve the velocity diagram to find c2 and hence to determine T2.
As

Referring to Figure 4.2, across the nozzle h01 = h02 = h2 + 1–
2 c2

2, thus

Hence, M2 = 0.97 with g R = (g - 1)Cp.
(iii) The axial velocity, cx = c2 cos a2 = 200m/s.
(iv) htt = DW/(h01 + h3ss - 1–

2 c3
2).

After some rearrangement,

Therefore htt = 0.93.
(v) Using eqn. (4.22a), the reaction is

From the velocity diagram, tan b3 = U/cx and tan b2 = tana2 - U/cx

EXAMPLE 4.3. Verify the assumed value of total-to-static efficiency in the above
example using Soderberg’s correlation method. The average blade aspect ratio for the
stage H/b = 5.0, the maximum blade thickness–chord ratio is 0.2 and the average
Reynolds number, defined by eqn. (4.14), is 105.

Solution. The approximation for total-to-static efficiency, eqn. (4.10a), is used and
can be rewritten as

The loss coefficients zR and zN, uncorrected for the effects of blade aspect ratio, are
determined using eqn. (4.12) which requires a knowledge of flow turning angle � for
each blade row.

For the nozzles, a1 = 0 and a2 = 70deg, thus �N = 70deg.
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Correcting for aspect ratio with eqn. (4.13a),

For the rotor, tan b2 = (cy2 - U)/cx = (552 - 500)/200 = 0.26,

Therefore,

and

Therefore

Correcting for aspect ratio with eqn. (4.13b)

The velocity ratios are

and the stage loading factor is

Therefore

This result is very close to the value assumed in the first example.
It is not too difficult to include the temperature ratio T3 /T2 implicit in the more exact

eqn. (4.10) in order to see how little effect the correction will have. To calculate T3

Therefore
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Choice of reaction and effect on efficiency
In Figure 4.4 the total-to-total and total-to-static efficiencies are shown plotted

against cy2/U for several values of stage loading factor DW/U2. These curves can 
now easily be replotted against the degree of reaction R instead of cy2/U. Equation
(4.22c) can be rewritten as R = 1 + (cy3 - cy2)/(2U) and cy3 eliminated using eqn. (4.16)
to give

(4.24)

The replotted curves are shown in Figure 4.9 as presented by Shapiro et al. (1957). In
the case of total-to-static efficiency, it is at once apparent that this is optimised, at a
given blade loading, by a suitable choice of reaction. When DW/U2 = 2, the maximum
value of hts occurs with approximately zero reaction. With lighter blade loading, the
optimum hts is obtained with higher reaction ratios. When DW/U2 > 2, the highest value
of hts attainable without rotor relative flow diffusion occurring is obtained with R = 0.

From Figure 4.4, for a fixed value of DW/U2, there is evidently only a relatively small
change in total-to-total efficiency (compared with hts), for a wide range of possible
designs. Thus htt is not greatly affected by the choice of reaction. However, the
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maximum value of htt decreases as the stage loading factor increases. To obtain high
total-to-total efficiency, it is therefore necessary to use the highest possible value of
blade speed consistent with blade stress limitations (i.e. to reduce DW/U2).

Design point efficiency of a turbine stage
The performance of a turbine stage in terms of its efficiency is calculated for several

types of design, i.e. 50% reaction, zero reaction and zero exit flow angle, using the loss
correlation method of Soderberg described earlier. These are most usefully presented
in the form of carpet plots of stage loading coefficient, y, and flow coefficient, f.

Total-to-total efficiency of 50% reaction stage

In a multistage turbine the total-to-total efficiency is the relevant performance crite-
rion, the kinetic energy at stage exit being recovered in the next stage. After the last
stage of a multistage turbine or a single-stage turbine, the kinetic energy in the exit
flow would be recovered in a diffuser or used for another purpose (e.g. as a contribu-
tion to the propulsive thrust).

From eqn. (4.9a), where it has already been assumed that c1 = c3 and T3 = T2, we
have

where DW = yU2 and, for a 50% reaction, w3 = c2 and zR = zN = z

as tan b3 = (y + 1)/(2f) and tan b 2 = (y - 1)/(2f).
From the above expressions the performance chart, shown in Figure 4.10, was

derived for specified values of y and f. From this chart it can be seen that the peak
total-to-total efficiency, htt, is obtained at very low values of f and y. As indicated in
a survey by Kacker and Okapuu (1982), most aircraft gas turbine designs will operate
with flow coefficients in the range, 0.5 � y � 1.5, and values of stage loading coeffi-
cient in the range, 0.8 � y � 2.8.

Total-to-total efficiency of a zero reaction stage

The degree of reaction will normally vary along the length of the blade depending
upon the type of design that is specified. The performance for R = 0 represents a limit,
lower values of reaction are possible but undesirable as they would give rise to large
losses in efficiency. For R < 0, w3 < w2, which means the relative flow decelerates across
the rotor.

Referring to Figure 4.5, for zero reaction b 2 = b 3, and from eqn. (4.21)
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Also, y = DW/U2 = f (tan a2 + tan a3) = f (tan b 2 + tan b 3) = 2f tan b 2,

Thus, using the above expressions,

From these expressions the flow angles can be calculated if values for y and f are spec-
ified. From an inspection of the velocity diagram,

Substituting the above expressions into eqn. (4.9a):

The performance chart shown in Figure 4.11 has been derived using the above expres-
sions. This is similar in its general form to Figure 4.10 for a 50% reaction, with the
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turbine stage of 50% reaction.



highest efficiencies being obtained at the lowest values of f and y, except that higher
efficiencies are obtained at higher values of the stage loading but at reduced values of
the flow coefficient.

Total-to-static efficiency of stage with axial velocity at exit

A single-stage axial turbine will have axial flow at exit and the most appropriate 
efficiency is usually total-to-static. To calculate the performance, eqn. (4.10a) is 
used:

With axial flow at exit, c1 = c3 = cx, and from the velocity diagram, Figure 4.12,
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Specifying f, y, the unknown values of the loss coefficients, zR and zN, can be derived
using Soderberg’s correlation, eqn. (4.12), in which

From the above expressions the performance chart, Figure 4.13, has been derived.
An additional limitation is imposed on the performance chart because of the 

reaction which must remain greater than or, in the limit, equal to zero. From eqn.
(4.22a),

Thus, at the limit, R = 0, the stage loading coefficient, y = 2.
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Maximum total-to-static efficiency of a reversible 
turbine stage

When blade losses and exit kinetic energy loss are included in the definition of effi-
ciency, we have shown, eqn. (4.10a), that the efficiency is

In the case of the ideal (or reversible) turbine stage the only loss is due to the exhaust
kinetic energy and then the total-to-static efficiency is

(4.25a)

since DW = h01 - h03ss = U(cy2 + cy3) and h03ss - h03ss = 1–
2 c2

3.
The maximum value of hts is obtained when the exit velocity c3 is nearly a minimum

for given turbine stage operating conditions (R, f and a2). On first thought it may appear
obvious that maximum hts will be obtained when c3 is absolutely axial (i.e. a3 = 0°)
but this is incorrect. By allowing the exit flow to have some counterswirl (i.e. a3 > 0
deg) the work done is increased for only a relatively small increase in the exit kinetic
energy loss. Two analyses are now given to show how the total-to-static efficiency of
the ideal turbine stage can be optimised for specified conditions.

Substituting cy2 = cx tan a2, cy3 = cx tan a3, c3 = cx /cosa3 and f = cx /U into eqn. (4.25),
leads to

(4.25b)

i.e. hts = fn (f, a2, a3).

To find the optimum hts when R and f are specified

From eqn. (4.22c) the nozzle flow outlet angle a2 can be expressed in terms of R, f
and a3 as

(4.26)

Substituting into eqn. (4.25b)

Differentiating this expression with respect to tana3, and equating the result to zero,

where k = (1 - R)/f. This quadratic equation has the solution

(4.27)
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the value of a3 being the optimum flow outlet angle from the stage when R and f are
specified. From eqn. (4.26), k = (tan2 - tan a3)/2 which when substituted into eqn. (4.27)
and simplified gives

Hence, the exact result that

The corresponding idealised hts max and R are

(4.28a)

To find the optimum hts when a2 and f are specified

Differentiating eqn. (4.25b) with respect to tan a3 and equating the result to zero,

Solving this quadratic, the relevant root is

Using simple trigonometric relations this simplifies still further to

Substituting this expression for a3 into eqn. (4.25b) the idealised maximum hts is
obtained:

(4.28b)

The corresponding expressions for the degree of reaction R and stage loading coeffi-
cient DW/U2 are

(4.29)

It is interesting that in this analysis the exit swirl angle a3 is only half that of the con-
stant reaction case. The difference is merely the outcome of the two different sets of
constraints used for the two analyses.

For both analyses, as the flow coefficient is reduced towards zero, a2 approaches p/2
and a3 approaches zero. Thus, for such high nozzle exit angle turbine stages, the appro-
priate blade loading factor for maximum hts can be specified if the reaction is known
(and conversely). For a turbine stage of 50% reaction (and with a3 Æ 0deg) the appro-
priate velocity diagram shows that DW/U2 � 1 for maximum hts. Similarly, a turbine
stage of zero reaction (which is an impulse stage for ideal, reversible flow) has a blade
loading factor DW/U2 � 2 for maximum hts.
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Calculations of turbine stage performance have been made by Horlock (1966) both
for the reversible and irreversible cases with R = 0 and 50%. Figure 4.14 shows the
effect of blade losses, determined with Soderberg’s correlation, on the total-to-static
efficiency of the turbine stage for the constant reaction of 50%. It is evident that exit
losses become increasingly dominant as the flow coefficient is increased.

Stresses in turbine rotor blades
Although this chapter is primarily concerned with the fluid mechanics and thermo-

dynamics of turbines, some consideration of stresses in rotor blades is needed as these
can place restrictions on the allowable blade height and annulus flow area, particularly
in high temperature, high stress situations. Only a very brief outline is attempted here
of a very large subject which is treated at much greater length by Horlock (1966), in
texts dealing with the mechanics of solids, e.g. Den Hartog (1952), Timoshenko (1956),
and in specialised discourses, e.g. Japiske (1986) and Smith (1986). The stresses in
turbine blades arise from centrifugal loads, from gas bending loads and from vibra-
tional effects caused by non-constant gas loads. Although the centrifugal stress pro-
duces the biggest contribution to the total stress, the vibrational stress is very significant
and thought to be responsible for fairly common vibratory fatigue failures (Smith 1986).
The direct and simple approach to blade vibration is to “tune” the blades so that reso-
nance does not occur in the operating range of the turbine. This means obtaining a blade
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FIG. 4.14. Total-to-static efficiency of a 50% reaction axial flow turbine stage (adapted
from Horlock 1966).



design in which none of its natural frequencies coincides with any excitation frequency.
The subject is complex, interesting but outside of the scope of the present text.

Centrifugal stresses

Consider a blade rotating about an axis O as shown in Figure 4.15. For an element
of the blade of length dr at radius r, at a rotational speed W the elementary centrifugal
load dFc is given by

where dm = rmA dr and the negative sign accounts for the direction of the stress gra-
dient (i.e. zero stress at the blade tip to a maximum at the blade root),
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For blades with a constant cross-sectional area, we get

(4.30a)

A rotor blade is usually tapered both in chord and in thickness from root to tip such
that the area ratio At/Ah is between 1/3 and 1/4. For such a blade taper it is often assumed
that the blade stress is reduced to 2/3 of the value obtained for an untapered blade. A
blade stress taper factor can be defined as

Thus, for tapered blades

(4.30b)

Values of the taper factor K quoted by Emmert (1950), are shown in Figure 4.16 for
various taper geometries.

Typical data for the allowable stresses of commonly used alloys are shown in Figure
4.17 for the “1000hr rupture life” limit with maximum stress allowed plotted as a func-
tion of blade temperature. It can be seen that in the temperature range 900–1100K,
nickel or cobalt alloys are likely to be suitable and for temperatures up to about 
1300K molybdenum alloys would be needed.

By means of blade cooling techniques it is possible to operate with turbine entry
temperatures up to 1650–1700K, according to Le Grivès (1986). Further detailed infor-
mation on one of the many alloys used for gas turbines blades is shown in Figure 4.18.
This material is Inconel, a nickel-based alloy containing 13% chromium, 6% iron, with
a little manganese, silicon and copper. Figure 4.18 shows the influence of the “rupture

K =
stress at root of tapered blade

stress at root of untapered blade
.
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life” and also the “percentage creep”, which is the elongation strain at the allowable
stress and temperature of the blade. To enable operation at high temperatures and 
for long life of the blades, the creep strength criterion is the one usually applied by
designers.

An estimate of the average rotor blade temperature Tb can be made using the 
approximation

(4.31)

i.e. 85% temperature recovery of the inlet relative kinetic energy.

EXAMPLE 4.4. Combustion gases enter the first stage of a gas turbine at a stagnation
temperature and pressure of 1200K and 4.0 bar. The rotor blade tip diameter is 0.75m,
the blade height is 0.12m and the shaft speed is 10,500 rev/min. At the mean radius
the stage operates with a reaction of 50%, a flow coefficient of 0.7 and a stage loading
coefficient of 2.5.

Determine

(i) the relative and absolute flow angles for the stage;
(ii) the velocity at nozzle exit;

(iii) the static temperature and pressure at nozzle exit assuming a nozzle efficiency of
0.96 and the mass flow;

(iv) the rotor blade root stress assuming the blade is tapered with a stress taper factor
K of 2/3 and the blade material density is 8000kg/m2;

(v) the approximate mean blade temperature;
(vi) taking only the centrifugal stress into account suggest a suitable alloy from the

information provided which could be used to withstand 1000hr of operation.

Solution. (i) The stage loading is

From eqn. (4.20) the reaction is

Adding and subtracting these two expressions, we get

Substituting values of y, f and R into the preceding equations, we obtain

and for similar triangles (i.e. 50% reaction)

(ii) At the mean radius, rm = (0.75 - 0.12)/2 = 0.315m, the blade speed is Um =
Wrm = (10500/30) ¥ p ¥ 0.315 = 1099.6 ¥ 0.315 = 346.36m/s. The axial velocity 
cx = fUm = 0.5 ¥ 346.36 = 242.45m/s and the velocity of the gas at nozzle exit is c2 =
cx /cos a2 = 242.45/cos 68.2 = 652.86m/s.
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(iii) To determine the conditions at nozzle exit, we have

From eqn. (2.40), the nozzle efficiency is

The mass flow is found from the continuity equation:

(iv) For a tapered blade, eqn. (4.30b) gives

where Ut = 1099.6 ¥ 0.375 = 412.3m/s.
The density of the blade material is taken to be 8000kg/m3 and so the root stress is

(v) The approximate average mean blade temperature is

(vi) The data in Figure 4.17 suggest that for this moderate root stress, cobalt or nickel
alloys would not withstand a lifespan of 1000hr to rupture and the use of molybdenum
would be necessary. However, it would be necessary to take account of bending and
vibratory stresses and the decision about the choice of a suitable blade material would
be decided on the outcome of these calculations.

Inspection of the data for Inconel 713 cast alloy, Figure 4.18, suggests that it might
be a better choice of blade material as the temperature–stress point of the above cal-
culation is to the left of the line marked creep strain of 0.2% in 1000hr. Again, account
must be taken of the additional stresses due to bending and vibration.

Design is a process of trial and error; changes in the values of some of the 
parameters can lead to a more viable solution. In the above case (with bending and
vibrational stresses included) it might be necessary to reduce one or more of the 
values chosen, e.g.
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(i) the rotational speed,
(ii) the inlet stagnation temperature,

(iii) the flow area.

N.B. The combination of values for y and f at R = 0.5 used in this example was selected
from data given by Wilson (1987) and corresponds to an optimum total-to-total effi-
ciency of 91.9%.

Turbine blade cooling

In the gas turbine industry there has been a continuing trend towards higher turbine
inlet temperatures, either to give increased specific thrust (thrust per unit air mass flow)
or to reduce the specific fuel consumption. The highest allowable gas temperature at
entry to a turbine with uncooled blades is 1250–1300K while, with blade cooling
systems, a range of gas temperatures up to 1800K or so may be employed, depending
on the nature of the cooling system.

Various types of cooling system for gas turbines have been considered in the past
and a number of these are now in use. Wilde (1977) reviewed the progress in blade
cooling techniques. He also considered the broader issues involving the various tech-
nical and design factors influencing the best choice of turbine inlet temperature for
future turbofan engines. Le Grivès (1986) reviewed types of cooling system, outlining
their respective advantages and drawbacks, and summarising important analytical con-
siderations concerning their aerodynamics and heat transfer.

The system of blade cooling most commonly employed in aircraft gas turbines is
where some cooling air is bled off from the exit stage of the high-pressure compressor
and carried by ducts to the guide vanes and rotor of the high-pressure turbine. It was
observed by Le Grivès that the cooling air leaving the compressor might be at a tem-
perature of only 400 to 450K less than the maximum allowable blade temperature of
the turbine. Figure 4.19 illustrates a high-pressure turbine rotor blade, cut away to show
the intricate labyrinth of passages through which the cooling air passes before it is vented
to the blade surface via the rows of tiny holes along and around the leading edge of the
blade. Ideally, the air emerges with little velocity and forms a film of cool air around
the blade surface (hence the term “film cooling”), insulating it from the hot gases. This
type of cooling system enables turbine entry temperatures up to 1800 K to be used.

There is a rising thermodynamic penalty incurred with blade cooling systems as the
turbine entry temperature rises, e.g. energy must be supplied to pressurise the air bled
off from the compressor. Figure 4.20 is taken from Wilde (1977) showing how the net
turbine efficiency decreases with increasing turbine entry temperature. Several in-
service gas turbine engines are included in the graph. Wilde did question whether
turbine entry temperatures greater than 1600K could really be justified in turbofan
engines because of the effect on the internal aerodynamic efficiency and specific fuel
consumption.

Turbine flow characteristics
An accurate knowledge of the flow characteristics of a turbine is of considerable

practical importance as, for instance, in the matching of flows between a compressor

Axial-flow Turbines: Two-dimensional Theory 121



and turbine of a jet engine. When a turbine can be expected to operate close to its design
incidence (i.e. in the low loss region) the turbine characteristics can be reduced to a
single curve. Figure 4.21, due to Mallinson and Lewis (1948), shows a comparison of
typical characteristics for one, two and three stages plotted as turbine overall pressure
ratio p0II/p0I against a mass flow coefficient m

.
(÷T01)/p0I. There is a noticeable tendency

for the characteristic to become more ellipsoidal as the number of stages is increased.
At a given pressure ratio the mass flow coefficient, or “swallowing capacity”, tends to
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FIG. 4.19. Cooled HP turbine rotor blade showing the cooling passages (courtesy of
Rolls-Royce plc).
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decrease with the addition of further stages to the turbine. One of the earliest attempts
to assess the flow variation of a multistage turbine is credited to Stodola (1945), who
formulated the much used “ellipse law”. The curve labelled “multistage” in Figure 4.21
is in agreement with the “ellipse law” expression

(4.32)

where k is a constant.
This expression has been used for many years in steam turbine practice, but an accu-

rate estimate of the variation in swallowing capacity with pressure ratio is of even
greater importance in gas turbine technology. Whereas the average condensing steam
turbine, even at part-load, operates at very high pressure ratios, some gas turbines may
work at rather low pressure ratios, making flow matching with a compressor a difficult
problem. The constant value of swallowing capacity, reached by the single-stage turbine
at a pressure ratio a little above 2, and the other turbines at progressively higher pres-
sure ratios, is associated with choking (sonic) conditions in the turbine stator blades.

Flow characteristics of a multistage turbine
Several derivations of the ellipse law are available in the literature. The derivation

given below is a slightly amplified version of the proof given by Horlock (1958). A
more general method has been given by Egli (1936) which takes into consideration the
effects when operating outside the normal low loss region of the blade rows.

Consider a turbine comprising a large number of normal stages, each of 50% reac-
tion; then, referring to the velocity diagram of Figure 4.22a, c1 = c3 = w2 and c2 = w3.
If the blade speed is maintained constant and the mass flow is reduced, the fluid angles

m T p k p p÷ 01 0 0 0
2 1 2

1( ) = - ( )[ ]I II I ,
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FIG. 4.21. Turbine flow characteristics (after Mallinson and Lewis 1948).



at exit from the rotor (b3) and nozzles (a2) will remain constant and the velocity diagram
then assumes the form shown in Figure 4.22b. The turbine, if operated in this manner,
will be of low efficiency, as the fluid direction at inlet to each blade row is likely to
produce a negative incidence stall. To maintain high efficiency the fluid inlet angles
must remain fairly close to the design values. It is therefore assumed that the turbine
operates at its highest efficiency at all off-design conditions and, by implication, the
blade speed is changed in direct proportion to the axial velocity. The velocity triangles
are similar at off-design flows but of different scale.

Now the work done by unit mass of fluid through one stage is U(cy2 + cy3) so that,
assuming a perfect gas,

and, therefore,

Denoting design conditions by subscript d, then

(4.33)

for equal values of cx /U.
From the continuity equation, at off-design, m

. = rAcx = rIAIcxI, and at design, m
.

d =
rdAcxd = r1A1cxI, hence

(4.34)

Consistent with the assumed mode of turbine operation, the polytropic efficiency is
taken to be constant at off-design conditions and, from eqn. (2.37), the relationship
between temperature and pressure is therefore,
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FIG. 4.22. Change in turbine stage velocity diagram with mass flow at constant 
blade speed.



Combined with p/r = RT the above expression gives, on eliminating p, r/Tn = constant,
hence

(4.35)

where n = g /{hp(g - 1)} - 1.
For an infinitesimal temperature drop eqn. (4.33) combined with eqns. (4.34) and

(4.35) gives, with little error,

(4.36)

Integrating eqn. (4.36),

where K is an arbitrary constant.
To establish a value for K it is noted that if the turbine entry temperature is constant

Td = T1 and T = T1 also.
Thus, K = [1 + (m

.
/m

.
d)2]T I

2n+1 and

(4.37)

Equation (4.37) can be rewritten in terms of pressure ratio since T/TI = (p/pI)hp(g-1)/g. As
2n + 1 = 2g /[hp(g - 1)] - 1, then

(4.38a)

With hp = 0.9 and g = 1.3 the pressure ratio index is about 1.8; thus the approximation
is often used

(4.38b)

which is ellipse law of a multistage turbine.

The Wells turbine
Introduction

Numerous methods for extracting energy from the motion of sea-waves have been
proposed and investigated since the late 1970s. The problem is in finding an efficient
and economical means of converting an oscillating flow of energy into a unidirectional
rotary motion for driving an electrical generator. A novel solution of this problem is
the Wells turbine (Wells 1976), a version of the axial-flow turbine. For countries sur-
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rounded by the sea, such as the British Isles and Japan to mention just two, or with
extensive shorelines, wave energy conversion is an attractive proposition. Energy con-
version systems based on the oscillating water column and the Wells turbine have been
installed at several locations (Islay in Scotland and at Trivandrum in India). Figure 4.23
shows the arrangement of a turbine and generator together with the oscillating column
of sea-water. The cross-sectional area of the plenum chamber is made very large com-
pared to the flow area of the turbine so that a substantial air velocity through the turbine
is attained.

One version of the Wells turbine consists of a rotor with about eight uncambered
aerofoil section blades set at a stagger angle of 90deg (i.e. with their chord lines lying
in the plane of rotation). A schematic diagram of such a Wells turbine is shown in Figure
4.24. At first sight the arrangement might seem to be a highly improbable means of
energy conversion. However, once the blades have attained design speed the turbine is
capable of producing a time-averaged positive power output from the cyclically revers-
ing airflow with a fairly high efficiency. According to Raghunathan et al. (1995) peak
efficiencies of 65% have been measured at the experimental wave power station on
Islay. The results obtained from a theoretical analysis by Gato and Falcào (1984)
showed that fairly high values of the mean efficiency, of the order 70–80%, may be
attained in an oscillating flow “with properly designed Wells turbines”.

Principle of operation

Figure 4.25(a) shows a blade in motion at the design speed U in a flow with an
upward, absolute axial velocity c1. It can be seen that the relative velocity w1 is inclined
to the chordline of the blade at an angle a. According to classical aerofoil theory, an
isolated aerofoil at an angle of incidence a to a free stream will generate a lift force L
normal to the direction of the free stream. In a viscous fluid the aerofoil will also expe-
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FIG. 4.23. Arrangement of Wells turbine and oscillating water column (adapted from
Raghunathan et al. 1995).



rience a drag force D in the direction of the free stream. These lift and drag forces can
be resolved into the components of force X and Y as indicated in Figure 4.25a, i.e.

(4.39)

(4.40)

The student should note, in particular, that the force Y acts in the direction of blade
motion, giving positive work production.

For a symmetrical aerofoil, the direction of the tangential force Y is the same for
both positive and negative values of a, as indicated in Figure 4.25b. If the aerofoils are
secured to a rotor drum to form a turbine row, as in Figure 4.24, they will always rotate
in the direction of the positive tangential force regardless of whether the air is approach-
ing from above or below. With a time-varying, bi-directional air flow the torque pro-
duced will fluctuate cyclically but can be smoothed to a large extent by means of a high
inertia rotor–generator.

It will be observed from the velocity diagrams that a residual swirl velocity is present
for both directions of flow. It was suggested by Raghunathan et al. (1995) that the swirl
losses at turbine exit can be reduced by the use of guide vanes.

Two-dimensional flow analysis

The performance of the Wells turbine can be predicted by means of blade element
theory. In this analysis the turbine annulus is considered to be made up of a series of
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concentric elementary rings, each ring being treated separately as a two-dimensional
cascade.

The power output from an elementary ring of area 2pr dr is given by

where Z is the number of blades and the tangential force on each blade element is

The axial force acting on the blade elements at radius r is Z dX, where

and where Cx, Cy are the axial and tangential force coefficients. Now the axial force on
all the blade elements at radius r can be equated to the pressure force acting on the ele-
mentary ring:

where w1 = cx /sina1.
An expression for the efficiency can now be derived from a consideration of all the

power losses and the power output. The power lost due to the drag forces is dWf = w1

dD, where

and the power lost due to exit kinetic energy is given by

where dm
. = 2prrcx dr and c2 is the absolute velocity at exit. Thus, the aerodynamic

efficiency, defined as power output/power input, can now be written as

(4.41)

The predictions for non-dimensional pressure drop p* and aerodynamic efficiency h
determined by Raghunathan et al. (1995) are shown in Figure 4.26a and b, respectively,
together with experimental results for comparison.

Design and performance variables

The primary input for the design of a Wells turbine is the air power based upon the
pressure amplitude (p1 - p2) and the volume flow rate Q at turbine inlet. The perfor-
mance indicators are the pressure drop, power and efficiency and their variation with the
flow rate. The aerodynamic design and consequent performance is a function of several
variables which have been listed by Raghunathan. In non-dimensional form these are
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and also blade thickness ratio, turbulence level at inlet to turbine, frequency of waves
and the relative Mach number. It was observed by Raghunathan et al. (1987) that the
Wells turbine has a characteristic feature which makes it significantly different from
most turbomachines: the absolute velocity of the flow is only a (small) fraction of the
relative velocity. It is theoretically possible for transonic flow conditions to occur in
the relative flow resulting in additional losses due to shock waves and an interaction
with the boundary layers leading to flow separation. The effects of the variables listed
above on the performance of the Wells turbine have been considered by Raghunathan
(1995) and a summary of some of the main findings is given below.

Effect of flow coefficient. The flow coefficient f is a measure of the angle of inci-
dence of the flow and the aerodynamic forces developed are critically dependent upon
this parameter. Typical results based on predictions and experiments of the non-
dimensional pressure drop p* = Dp/(rw2D2

t ) and efficiency are shown in Figure 4.26.
For a Wells turbine a linear relationship exists between pressure drop and the flowrate
(Figure 4.26a) and this fact can be employed when making a match between a turbine
and an oscillating water column which also has a similar characteristic.

The aerodynamic efficiency h (Figure 4.26b) is shown to increase up to a certain
value, after which it decreases, because of boundary layer separation.

Effect of blade solidity. The solidity is a measure of the blockage offered by the
blades to the flow of air and is an important design variable. The pressure drop across
the turbine is, clearly, proportional to the axial force acting on the blades. An increase
of solidity increases the axial force and likewise the pressure drop. Figure 4.27 shows
how the variations of peak efficiency and pressure drop are related to the amount of
the solidity.

Raghunathan gives correlations between pressure drop and efficiency with solidity:

where the subscript 0 refers to values for a two-dimensional isolated aerofoil (s = 0).
A correlation between pressure drop and solidity (for s > 0) was also expressed as

where A is a constant.

Effect of hub–tip ratio. The hub–tip ratio � is an important parameter as it con-
trols the volume flow rate through the turbine but also influences the stall conditions,
the tip leakage and, most importantly, the ability of the turbine to run up to operating
speed. Values of � < 0.6 are recommended for design.

The starting behaviour of the Wells turbine. When a Wells turbine is started from
rest the incoming relative flow will be at 90deg to the rotor blades. According to the
choice of the design parameters the blades could be severely stalled and, consequen-
tially, the tangential force Y will be small and the acceleration negligible. In fact, if and
when this situation occurs the turbine may accelerate only up to a speed much lower
than the design operational speed, a phenomenon called crawling. The problem can be
avoided either by choosing a suitable combination of hub–tip ratio and solidity values
at the design stage or by some other means such as incorporating a starter drive. Values
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of hub–tip ratio and solidity which have been found to allow self-starting of the Wells
turbine are indicated in Figure 4.28.

Pitch-controlled blades
Introduction

Over the last decade some appreciable improvements have been made in the per-
formance of the Wells turbine as a result of incorporating pitch-controlled blades into
the design. The efficiency of the original Wells turbine had a peak of about 80% but
the power output was rather low and the starting performance was poor. One reason
for the low power output was the low tangential force Y and low flow coefficient f as
a consequence of the fixed-blade geometry.

A turbine with self-pitch controlled blades

Performance enhancement of the Wells turbine reported by Kim et al. (2002) was
achieved by incorporating swivellable vanes instead of fixed vanes in an experimental
test rig. The method they devised used symmetrical blades that pivot about the nose,
whose pitch angle changes by a small amount as a result of the varying aerodynamic
forces developed by the oscillating flow. This change to the turbine configuration
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enables a higher torque and efficiency to be obtained from the reciprocating airflow.
According to the authors the turbine is geometrically simpler and would be less expen-
sive to manufacture than some earlier methods using “active” pitch-controlled blades,
e.g. Sarmento et al. (1987), Salter (1993).

The working principle with self-pitch-controlled blades is illustrated in Figure 4.29.
This shows one of the turbine blades fixed to the hub by a pivot located near the leading
edge, allowing the blade to move between two prescribed limits, ±g. An aerofoil set at
a certain angle of incidence experiences a pitching moment about the pivot, which
causes the blade to flip. In this new position the blade develops a higher tangential force
and torque at a lower rotational speed than was obtained with the original fixed-blade
design of the Wells turbine.

Kim et al., using a piston-driven wind tunnel, measured the performance character-
istics of the turbine under steady flow conditions. To determine its running and start-
ing characteristics, a quasi-steady computer simulation of the oscillating through-flow
was used together with the steady-state characteristics. Details of the turbine rotor are
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The turbine characteristics under steady flow conditions were determined in the form
of the output torque coefficient Ct and the input power coefficient CP against the flow
coefficient, f = cx /Uav, defined as

(4.42)

(4.43)

where t0 is the output torque and Dp0 is the total pressure difference across the turbine.
Figure 4.30a shows the Ct vs. f characteristics for the turbine for various blade-

setting angles. The solid line (g = 0deg) represents the result obtained for the original,
fixed-blade Wells turbine. For values of g > 0deg, Ct decreases with increasing g in the
stall-free zone but, beyond the original stall point for g = 0, much higher values of Ct

were obtained.
Figure 4.30b shows the CP vs f characteristics for the turbine for various blade-

setting angles. This figure indicates that for g > 0deg the input power coefficient CP

is lower than the case where g = 0deg for all values of f. Clearly, this is due to the
variation in the rotor blade setting angle.

The instantaneous efficiency of the turbine is given by

(4.44a)

and the mean efficiency over the period of the wave, T = 1/f(s), is

(4.44b)

Using the measured characteristics for Ct and CP and assuming a sinusoidal varia-
tion of the axial velocity with a different maximum amplitude* for each half cycle, as
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shown in Figure 4.31, the mean efficiency of the cycle can be computed. Figure 4.32
shows the mean efficiency as a function of the flow coefficient f for a range of g values
with cxi = 0.6cxo.

Compared to the basic Wells turbine (with g = 0deg), the optimum result for g = 10
deg shows an improved mean efficiency and an optimum flow coefficient of about 0.4.
It is apparent that further field testing would be needed to prove the concept.
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A variable-pitch aerodynamic turbine

This turbine, which was investigated by Finnigan and Auld (2003), was designed to
operate efficiently over a wide range of flow conditions. The turbine employs a novel
blade arrangement, which is claimed to be suitable for high torque/low speed opera-
tion in an oscillating flow varying from zero to near transonic. To achieve large lift
forces and high torque a unique blade form was employed. As shown in Figure 4.33,
the blades are symmetric about the mid-chord, which is also their pitch axis, and this
allows them to accept flow from either direction. Also, the blades are not required to
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pass through the g = 0deg position when the flow direction changes. The rather unusual
blade pitching sequence is shown in Figure 4.34. One benefit of this operational
sequence is that no blade interference can occur; a small aspect ratio (i.e. large chord
length) can be used thus maintaining smaller blade-to-blade spacing.

In Figure 4.33 the pitch angle g is defined as the angle between the direction of rota-
tion and the blade chord. In an oscillating flow the incident axial velocity changes con-
tinuously with each phase of the wave motion, with corresponding changes to the
relative velocity, w1, and the relative angle of attack, b. By employing control systems
based on other system variables, Finnigan and Auld suggested that b can be maintained
at or near the optimal lift-producing value by continuously adjusting the angle g. The
intention would be to maximise the energy conversion efficiency over each phase of
the flow cycle.

Steady flow performance tests were made in a 1.5m ¥ 2.1m wind tunnel on a model
variable-pitch turbine with untwisted blades. Details of the turbine rotor are shown
below:
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Tests were made over a range of flow coefficients for several values of the angle g.
The operating efficiency curve of the turbine is shown in Figure 4.35. Measured effi-
ciency results for g = 20°, 40° and 60° are shown as circles. The operating curve inter-
sects the efficiency peak at each of these blade angles and, therefore, indicates the
optimum blade angle for a range of flow conditions. In real sea conditions the authors
of this work expect flows with f of around 0.5 and the corresponding operating range
is identified in Figure 4.35. In comparison it is interesting to notice the very limited
range of flow coefficient of the basic Wells turbine.

The maximum overall efficiency of the turbine investigated by Finnigan and Auld
was 63% at g = 40deg and f = 1.0.

Further work

Energetech in Sydney, Australia, began (circa. 2003) the design of a half-scale test
turbine, which will be used for more detailed flow studies and to test new blade–hub
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arrangements. Also, a full-scale 1.6m diameter variable-pitch turbine has been con-
structed for use at the prototype wave energy plant at Port Kembla, NSW, Australia.
Studies of derivatives of the Wells turbine are also being undertaken at research centres
in the United Kingdom, Ireland, Japan, India and other countries. It is still not clear
which type of blading or which pitch-control system will prevail. Kim et al. (2001)
attempted a comparison of five derivatives of the Wells turbine using steady flow data
and numerical simulation of an irregular wave motion. However, at present a “best”
type has still not emerged from a welter of data. A final conclusion must await the
outcome of further development and the testing of prototypes subjected to real sea-
wave conditions.
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Problems
1. Show, for an axial flow turbine stage, that the relative stagnation enthalpy across the rotor

row does not change. Draw an enthalpy–entropy diagram for the stage labelling all salient points.
Stage reaction for a turbine is defined as the ratio of the static enthalpy drop in the rotor to

that in the stage. Derive expressions for the reaction in terms of the flow angles and draw veloc-
ity triangles for reactions of zero, 0.5 and 1.0.

2. (i) An axial flow turbine operating with an overall stagnation pressure of 8 to 1 has a poly-
tropic efficiency of 0.85. Determine the total-to-total efficiency of the turbine.
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(ii) If the exhaust Mach number of the turbine is 0.3, determine the total-to-static efficiency.
(iii) If, in addition, the exhaust velocity of the turbine is 160m/s, determine the inlet total 

temperature.

Assume for the gas that CP = 1.175kJ/(kgK) and R = 0.287kJ/(kgK).

3. The mean blade radii of the rotor of a mixed flow turbine are 0.3m at inlet and 0.1m at
outlet. The rotor rotates at 20,000 rev/min and the turbine is required to produce 430kW. The
flow velocity at nozzle exit is 700m/s and the flow direction is at 70° to the meridional plane.

Determine the absolute and relative flow angles and the absolute exit velocity if the gas flow
is 1kg/s and the velocity of the through-flow is constant through the rotor.

4. In a Parson’s reaction turbine the rotor blades are similar to the stator blades but with the
angles measured in the opposite direction. The efflux angle relative to each row of blades is 70
deg from the axial direction, the exit velocity of steam from the stator blades is 160m/s, the blade
speed is 152.5m/s and the axial velocity is constant. Determine the specific work done by the
steam per stage.

A turbine of 80% internal efficiency consists of ten such stages as described above and receives
steam from the stop valve at 1.5MPa and 300°C. Determine, with the aid of a Mollier chart, the
condition of the steam at outlet from the last stage.

5. Values of pressure (kPa) measured at various stations of a zero-reaction gas turbine stage,
all at the mean blade height, are shown in the table given below.

Axial-flow Turbines: Two-dimensional Theory 141

Stagnation pressure Static pressure

Nozzle entry 414 Nozzle exit 207
Nozzle exit 400 Rotor exit 200

The mean blade speed is 291m/s, inlet stagnation temperature 1100K, and the flow angle at
nozzle exit is 70deg measured from the axial direction. Assuming the magnitude and direction
of the velocities at entry and exit of the stage are the same, determine the total-to-total efficiency
of the stage. Assume a perfect gas with Cp = 1.148kJ/(kg°C) and g = 1.333.

6. In a certain axial flow turbine stage the axial velocity cx is constant. The absolute 
velocities entering and leaving the stage are in the axial direction. If the flow coefficient cx /U
is 0.6 and the gas leaves the stator blades at 68.2deg from the axial direction, calculate

(i) the stage loading factor, DW/U2;
(ii) the flow angles relative to the rotor blades;

(iii) the degree of reaction;
(iv) the total-to-total and total-to-static efficiencies.

The Soderberg loss correlation, eqn. (4.12) should be used.

7. An axial flow gas turbine stage develops 3.36MW at a mass flow rate of 27.2kg/s. At the
stage entry the stagnation pressure and temperature are 772kPa and 727°C, respectively. The
static pressure at exit from the nozzle is 482kPa and the corresponding absolute flow direction
is 72° to the axial direction. Assuming the axial velocity is constant across the stage and the gas
enters and leaves the stage without any absolute swirl velocity, determine

(i) the nozzle exit velocity;
(ii) the blade speed;

(iii) the total-to-static efficiency;
(iv) the stage reaction.



The Soderberg correlation for estimating blade row losses should be used. For the gas assume
that CP = 1.148kJ/(kgK) and R = 0.287kJ/(kgK).

8. Derive an approximate expression for the total-to-total efficiency of a turbine stage in terms
of the enthalpy loss coefficients for the stator and rotor when the absolute velocities at inlet and
outlet are not equal.

A steam turbine stage of high hub–tip ratio is to receive steam at a stagnation pressure and
temperature of 1.5MPa and 325°C respectively. It is designed for a blade speed of 200m/s and
the following blade geometry was selected:
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Nozzles Rotor

Inlet angle, deg 0 48
Outlet angle, deg 70.0 56.25
Space/chord ratio, s/l 0.42 —
Blade length/axial chord ratio, H/b 2.0 2.1
Max. thickness/axial chord 0.2 0.2

The deviation angle of the flow from the rotor row is known to be 3deg on the evidence of
cascade tests at the design condition. In the absence of cascade data for the nozzle row, the
designer estimated the deviation angle from the approximation 0.19 qs/l where q is the blade
camber in degrees. Assuming the incidence onto the nozzles is zero, the incidence onto the rotor
1.04deg and the axial velocity across the stage is constant, determine

(i) the axial velocity;
(ii) the stage reaction and loading factor;

(iii) the approximate total-to-total stage efficiency on the basis of Soderberg’s loss correlation,
assuming Reynolds number effects can be ignored;

(iv) by means of a large steam chart (Mollier diagram) the stagnation temperature and pressure
at stage exit.

9. (a) A single-stage axial flow turbine is to be designed for zero reaction without any
absolute swirl at rotor exit. At nozzle inlet the stagnation pressure and temperature of the gas are
424kPa and 1100K. The static pressure at the mean radius between the nozzle row and rotor
entry is 217kPa and the nozzle exit flow angle is 70°.

Sketch an appropriate Mollier diagram (or a T - s diagram) for this stage allowing for the
effects of losses and sketch the corresponding velocity diagram. Hence, using Soderberg’s cor-
relation to calculate blade row losses, determine for the mean radius,

(i) the nozzle exit velocity,
(ii) the blade speed,

(iii) the total-to-static efficiency.

(b) Verify for this turbine stage that the total-to-total efficiency is given by



where f = cx /U. Hence, determine the value of the total-to-total efficiency.
Assume for the gas that Cp = 1.15kJ/(kgK) and g = 1.333.

10. (a) Prove that the centrifugal stress at the root of an untapered blade attached to the drum
of an axial flow turbomachine is given by

where rm = density of blade material, N = rotational speed of drum and An = area of the flow
annulus.

(b) The preliminary design of an axial-flow gas turbine stage with stagnation conditions at
stage entry of p01 = 400kPa, T01 = 850K, is to be based upon the following data applicable to
the mean radius:

Flow angle at nozzle exit, a2 = 63.8deg
Reaction, R = 0.5
Flow coefficient, cx /Um = 0.6
Static pressure at stage exit, p3 = 200kPa
Estimated total-to-static efficiency, hts = 0.85.

Assuming that the axial velocity is unchanged across the stage, determine

(i) the specific work done by the gas;
(ii) the blade speed;

(iii) the static temperature at stage exit.

(c) The blade material has a density of 7850kg/m3 and the maximum allowable stress in the
rotor blade is 120MPa. Taking into account only the centrifugal stress, assuming untapered blades
and constant axial velocity at all radii, determine for a mean flow rate of 15kg/s

(i) the rotor speed (rev/min);
(ii) the mean diameter;

(iii) the hub–tip radius ratio.

For the gas assume that CP = 1050J/(kgK) and R = 287J/(kgK).

11. The design of a single-stage axial-flow turbine is to be based on constant axial velocity
with axial discharge from the rotor blades directly to the atmosphere.

The following design values have been specified:

Mass flow rate 16.0kg/s
Initial stagnation temperature, T01 1100K
Initial stagnation pressure, p01 230kN/m2

Density of blading material, rm 7850kg/m3

Maximum allowable centrifugal stress at blade root 1.7 ¥ 108 N/m2

Nozzle profile loss coefficient, YP = (p01 - p02)/(p02 - p2) 0.06
Taper factor for blade stressing, K 0.75

In addition the following may be assumed:

Atmospheric pressure, p3 102kPa
Ratio of specific heats, g 1.333
Specific heat at constant pressure, CP 1150J/(kgK)

In the design calculations values of the parameters at the mean radius are as follows:

Stage loading coefficient, y = DW/U2 1.2
Flow coefficient, f = cx /U 0.35
Isentropic velocity ratio, U/c0 0.61
where c0 = ÷ [2(h01 - h3SS)]
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Determine

(i) the velocity triangles at the mean radius;
(ii) the required annulus area (based on the density at the mean radius);

(iii) the maximum allowable rotational speed;
(iv) the blade tip speed and the hub–tip radius ratio.
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CHAPTER 5

Axial-flow Compressors 
and Fans
A solemn, strange and mingled air, ’t was sad by fits, by starts was wild.
(W. COLLINS, The Passions.)

Introduction
The idea of using a form of reversed turbine as an axial compressor is as old as the

reaction turbine itself. It is recorded by Stoney (1937) that Sir Charles Parsons obtained
a patent for such an arrangement as early as 1884. However, simply reversing a turbine
for use as a compressor gives efficiencies which are, according to Howell (1945), less
than 40% for machines of high pressure ratio. Parsons actually built a number of these
machines (circa 1900), with blading based upon improved propeller sections. The
machines were used for blast furnace work, operating with delivery pressures between
10 and 100kPa. The efficiency attained by these early, low-pressure compressors was
about 55%; the reason for this low efficiency is now attributed to blade stall. A high
pressure ratio compressor (550kPa delivery pressure) was also built by Parsons but is
reported by Stoney to have “run into difficulties”. The design, comprising two axial
compressors in series, was abandoned after many trials, the flow having proved to be
unstable (presumably due to compressor surge). As a result of low efficiency, axial
compressors were generally abandoned in favour of multistage centrifugal compressors
with their higher efficiency of 70–80%.

It was not until 1926 that any further development on axial compressors was under-
taken when A. A. Griffith outlined the basic principles of his aerofoil theory of com-
pressor and turbine design. The subsequent history of the axial compressor is closely
linked with that of the aircraft gas turbine and has been recorded by Cox (1946) 
and Constant (1945). The work of the team under Griffith at the Royal Aircraft
Establishment, Farnborough, led to the conclusion (confirmed later by rig tests) that
efficiencies of at least 90% could be achieved for “small” stages, i.e. low pressure ratio
stages.

The early difficulties associated with the development of axial-flow compressors
stemmed mainly from the fundamentally different nature of the flow process compared
with that in axial-flow turbines. Whereas in the axial turbine the flow relative to each
blade row is accelerated, in axial compressors it is decelerated. It is now widely known
that although a fluid can be rapidly accelerated through a passage and sustain a small
or moderate loss in total pressure the same is not true for a rapid deceleration. In the
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latter case large losses would arise as a result of severe stall caused by a large adverse
pressure gradient. So as to limit the total pressure losses during flow diffusion it is nec-
essary for the rate of deceleration (and turning) in the blade passages to be severely
restricted. (Details of these restrictions are outlined in Chapter 3 in connection with the
correlations of Lieblein and Howell.) It is mainly because of these restrictions that axial
compressors need to have many stages for a given pressure ratio compared with an
axial turbine which needs only a few. Thus, the reversed turbine experiment tried by
Parsons was doomed to a low operating efficiency.

The performance of axial compressors depends upon their usage category. Carchedi
and Wood (1982) described the design and development of a single-shaft 15-stage axial-
flow compressor which provided a 12 to 1 pressure ratio at a mass flow of 27.3kg/s for
a 6MW industrial gas turbine. The design was based on subsonic flow and the com-
pressor was fitted with variable stagger stator blades to control the position of the low-
speed surge line. In the field of aircraft gas turbines, however, the engine designer is
more concerned with maximising the work done per stage while retaining an accept-
able level of overall performance. Increased stage loading almost inevitably leads to
some aerodynamic constraint. This constraint will be increased Mach number, possi-
bly giving rise to shock-induced boundary layer separation or increased losses arising
from poor diffusion of the flow. Wennerstrom (1990) has outlined the history of highly
loaded axial-flow compressors with special emphasis on the importance of reducing the
number of stages and the ways that improved performance can be achieved. Since about
1970 a significant and special change occurred with respect to one design feature of
the axial compressor and that was the introduction of low aspect ratio blading. It was
not at all obvious why blading of large chord would produce any performance advan-
tage, especially as the trend was to try to make engines more compact and lighter by
using high aspect ratio blading. Wennerstrom (1989) has reviewed the increased usage
of low aspect ratio blading in aircraft axial-flow compressors and reported on the high
loading capability, high efficiency and good range obtained with this type of blading.
One early application was an axial-flow compressor that achieved a pressure ratio of
12.1 in only five stages, with an isentropic efficiency of 81.9% and an 11% stall margin.
The blade tip speed was 457m/s and the flow rate per unit frontal area was 192.5
kg/s/m2. It was reported that the mean aspect ratio ranged from a “high” of 1.2 in the
first stage to less than 1.0 in the last three stages. A related later development pursued
by the US Air Force was an alternative inlet stage with a rotor mean aspect ratio of
1.32 which produced, at design, a pressure ratio of 1.912 with an isentropic efficiency
of 85.4% and an 11% stall margin. A maximum efficiency of 90.9% was obtained at a
pressure ratio of 1.804 and lower rotational speed.

The flow within an axial-flow compressor is exceedingly complex which is one
reason why research and development on compressors has proliferated over the years.
In the following pages a very simplified and basic study is made of this compressor so
that the student can grasp the essentials.

Two-dimensional analysis of the compressor stage
The analysis in this chapter is simplified (as it was for axial turbines) by assuming

the flow is two-dimensional. This approach can be justified if the blade height is small
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compared with the mean radius. Again, as for axial turbines, the flow is assumed to 
be invariant in the circumferential direction and that no spanwise (radial) velocities
occur. Some of the three-dimensional effects of axial turbomachines are considered in
Chapter 6.

To illustrate the layout of an axial compressor, Figure 5.1(a) shows a sectional
drawing of the three-shaft compressor system of the Rolls-Royce RB211 gas-turbine
engine. The very large blade on the left is part of the fan rotor which is on one shaft;
this is followed by two six-stage compressors of the “core” engine, each on its own
shaft. A compressor stage is defined as a rotor blade row followed by a stator blade
row. Figure 5.1b shows some of the blades of the first stage of the low-pressure com-
pressor opened out into a plane array. The rotor blades (black) are fixed to the rotor
drum and the stator blades are fixed to the outer casing. The blades upstream of the
first rotor row are inlet guide vanes. These are not considered to be a part of the first
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FIG. 5.1. Axial-flow compressor and blading arrays. (a) Section of the compression
system of the RB211-535E4 gas-turbine engine (courtesy of Rolls-Royce plc). 

(b) Development of the first stage-blade rows and inlet guide vanes.



stage and are treated separately. Their function is quite different from the other blade
rows since, by directing the flow away from the axial direction, they act to accelerate
the flow rather than diffuse it. Functionally, inlet guide vanes are the same as turbine
nozzles; they increase the kinetic energy of the flow at the expense of the pressure
energy.

Velocity diagrams of the compressor stage
The velocity diagrams for the stage are given in Figure 5.2 and the convention is

adopted throughout this chapter of accepting all angles and swirl velocities in this figure
as positive. As for axial turbine stages, a normal compressor stage is one where the
absolute velocities and flow directions at stage outlet are the same as at stage inlet. The
flow from a previous stage (or from the guide vanes) has a velocity c1 and direction a1;
substracting vectorially the blades speed U gives the inlet relative velocity w1 at angle
b1 (the axial direction is the datum for all angles). Relative to the blades of the rotor,
the flow is turned to the direction b2 at outlet with a relative velocity w2. Clearly, by
adding vectorially the blade speed U onto w2 gives the absolute velocity from the rotor,
c2 at angle a2. The stator blades deflect the flow towards the axis and the exit velocity
is c3 at angle a3. For the normal stage c3 = c1 and a3 = a1. It will be noticed that as
drawn in Figure 5.2, both the relative velocity in the rotor and the absolute velocity in
the stator are diffused. It will be shown later in this chapter that the relative amount 
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of diffusion of kinetic energy in the rotor and stator rows, significantly influences the
stage efficiency.

Thermodynamics of the compressor stage
The specific work done by the rotor on the fluid, from the steady flow energy equa-

tion (assuming adiabatic flow) and momentum equation is

(5.1)

In Chapter 4 it was proved for all axial turbomachines that h0rel = h + 1–
2 w2 is constant

in the rotor. Thus,

(5.2)

This is a valid result as long as there is no radial shift of the streamlines across the rotor
(i.e. U1 = U2).

Across the stator, h0 is constant, and

(5.3)

The compression process for the complete stage is represented on a Mollier diagram
in Figure 5.3, which is generalised to include the effects of irreversibility.
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Stage loss relationships and efficiency
From eqns. (5.1) and (5.3) the actual work performed by the rotor on unit mass of

fluid is DW = h03 - h01. The reversible or minimum work required to attain the same
final stagnation pressure as the real process is

using the approximation that Dh = TDs.
The temperature rise in a compressor stage is only a small fraction of the absolute

temperature level and therefore, to a close approximation.

(5.4)

Again, because of the small stage temperature rise, the density change is also small and
it is reasonable to assume incompressibility for the fluid. This approximation is applied
only to the stage and a mean stage density is implied; across a multistage compressor
an appreciable density change can be expected.

The enthalpy losses in eqn. (5.4) can be expressed as stagnation pressure losses as
follows. As h02 = h03 then,

(5.5)

since p0 - p = 1–
2 rc2 for an incompressible fluid.

Along the isentrope 2 - 3s in Figure 5.3, Tds = 0 = dh - (1/r)/dp, and so,

(5.6)

Thus, subtracting eqn. (5.6) from eqn. (5.5),

(5.7)

Similarly, for the rotor,

(5.8)

The total-to-total stage efficiency is,

(5.9)

It is to be observed that eqn. (5.9) also has direct application to pumps and fans.
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Reaction ratio
For the case of incompressible and reversible flow it is permissible to define the 

reaction R as the ratio of static pressure rise in the rotor to the static pressure rise 
in the stage

(5.10a)

If the flow is both compressible and irreversible a more general definition of R is
the ratio of the rotor static enthalpy rise to the stage static enthalpy rise,

(5.10b)

From eqn. (5.2), h2 - h1 = 1–
2 (w2

1- w2
2). For normal stages (c1 = c3), h3 - h1 = h03 - h01 =

U(cy2 - cy1). Substituting into eqn. (5.10b)

(5.10c)

where it is assumed that cx is constant across the stage. From Figure 5.2, cy2 = U - wy2

and cy1 = U - wy1 so that cy2 - cy1 = wy1 - wy2. Thus,

(5.11)

where

(5.12)

An alternative useful expression for reaction can be found in terms of the fluid outlet
angles from each blade row in a stage. With wy1 = U - cy1, eqn. (5.11) gives

(5.13)

Both expressions for reaction given above may be derived on a basis of incompress-
ible, reversible flow, together with the definition of reaction in eqn. (5.10a).

Choice of reaction
The reaction ratio is a design parameter which has an important influence on stage

efficiency. Stages having 50% reaction are widely used as the adverse (retarding) pres-
sure gradient through the rotor rows and stator rows are equally shared. This choice of
reaction minimises the tendency of the blade boundary layers to separate from the solid
surfaces, thus avoiding large stagnation pressure losses.

If R = 0.5, then a1 = b2 from eqn. (5.13), and the velocity diagram is symmet-
rical. The stage enthalpy rise is equally distributed between the rotor and stator 
rows.

If R > 0.5 then b 2 > a1 and the velocity diagram is skewed to the right as shown in
Figure 5.4a. The static enthalpy rise in the rotor exceeds that in the stator (this is also
true for the static pressure rise).
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If R < 0.5 then b 2 < a1 and the velocity diagram is skewed to the left as indicated 
in Figure 5.4b. Clearly, the stator enthalpy (and pressure) rise exceeds that in the 
rotor.

In axial turbines the limitation on stage work output is imposed by rotor blade stresses
but, in axial compressors, stage performance is limited by Mach number considera-
tions. If Mach number effects could be ignored, the permissible temperature rise, based
on incompressible flow cascade limits, increases with the amount of reaction. With a
limit of 0.7 on the allowable Mach number, the temperature rise and efficiency are at
a maximum with a reaction of 50%, according to Horlock (1958).

Stage loading
The stage loading factor y is another important design parameter of a compressor

stage and is one which strongly affects the off-design performance characteristics. It is
defined by

(5.14a)

With cy2 � U - wy2 this becomes,

(5.14b)

where f = cx /U is called the flow coefficient.
The stage loading factor may also be expressed in terms of the lift and drag coeffi-

cients for the rotor. From Figure 3.5, replacing am with bm, the tangential blade force
on the moving blades per unit span is
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where tanbm = 1–
2 (tan b1 + tan b2).

Now CL = L/(
1–
2 rw2

ml) hence, substituting for L above,

(5.15)

The work done by each moving blade per second is YU and is transferred to the fluid
through one blade passage during that period. Thus, YU = rscx(h03 - h01).

Therefore, the stage loading factor may now be written

(5.16)

Substituting eqn. (5.15) in eqn. (5.16) the final result is

(5.17)

In Chapter 3, the approximate analysis indicated that maximum efficiency is obtained
when the mean flow angle is 45deg. The corresponding optimum stage loading factor
at bm = 45deg is

(5.18)

Since CD << CL in the normal low loss operating range, it is permissible to drop CD

from eqn. (5.18).

Simplified off-design performance
Horlock (1958) has considered how the stage loading behaves with varying 

flow coefficient, f and how this off-design performance is influenced by the choice 
of design conditions. Now cascade data suggests that fluid outlet angles b2 (for
the rotor) and a1 (= a3) for the stator do not change appreciably for a range of inci-
dence up to the stall point. The simplification may therefore be made that, for a given
stage,

(5.19)

Inserting this expression into eqn. (5.14b) gives

(5.20a)

An inspection of eqns. (5.20a) and (5.14a) indicates that the stagnation enthalpy rise
of the stage increases as the mass flow is reduced, when running at constant rotational
speed, provided t is positive. The effect is shown in Figure 5.5, where y is plotted
against f for several values of t.

Writing y = yd and f = fd for conditions at the design point, then

(5.20b)
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The values of yd and fd chosen for a particular stage design determines the value of t.
Thus t is fixed without regard to the degree of reaction and, therefore, the variation of
stage loading at off-design conditions is not dependent on the choice of design reac-
tion. However, from eqn. (5.13) it is apparent that, except for the case of 50% reaction
when a1 = b2, the reaction does change away from the design point. For design reac-
tions exceeding 50% (b 2 > a1), the reaction decreases towards 50% as f decreases;
conversely, for design reactions less than 50% the reaction approaches 50% with dimin-
ishing flow coefficient.

If t is eliminated between eqns. (5.20a) and (5.20b) the following expression results,

(5.21)

This equation shows that, for a given design stage loading yd, the fractional change 
in stage loading corresponding to a fractional change in flow coefficient is always 
the same, independent of the stage reaction. In Figure 5.6 it is seen that heavily loaded
stages (yd Æ 1) are the most flexible producing little variation of y with change of 
f. Lightly loaded stages (yd Æ 0) produce large changes in y with changing f.
Data from cascade tests show that yd is limited to the range 0.3 to 0.4 for the most effi-
cient operation and so substantial variations of y can be expected away from the design
point.

In order to calculate the pressure rise at off-design conditions the variation of stage
efficiency with flow coefficient is required. For an ideal stage (no losses) the pressure
rise in incompressible flow is given by

(5.22)
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Stage pressure rise
Consider first the ideal compressor stage which has no stagnation pressure losses.

Across the rotor row p0rel is constant and so

(5.23a)

Across the stator row p0 is constant and so

(5.23b)

Adding together the pressure rise for each row and considering a normal stage (c3 = c1)
gives

(5.24)

For either velocity triangle (Figure 5.2), the cosine rule gives c2 - U2 + w2 = 2Uw
cos(p/2 - b) or

(5.25)

Substituting eqn. (5.25) into the stage pressure rise,

Again, referring to the velocity diagram, wy1 - wy2 = cy2 - cy1 and

(5.26)

It is noted that, for an isentropic process, Tds = 0 = dh - (1/r)dp and, therefore, 
Dh = (1/r)Dp.
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The pressure rise in a real stage (involving irreversible processes) can be determined
if the stage efficiency is known. Defining the stage efficiency hs as the ratio of the isen-
tropic enthalpy rise to the actual enthalpy rise corresponding to the same finite pres-
sure change, (cf. Figure 2.7), this can be written as

Thus,

(5.27)

If c1 = c3, then hs is a very close approximation of the total-to-total efficiency htt.
Although the above expressions are derived for incompressible flow they are, never-
theless, a valid approximation for compressible flow if the stage temperature (and pres-
sure) rise is small.

Pressure ratio of a multistage compressor
It is possible to apply the preceding analysis to the determination of multistage com-

pressor pressure ratios. The procedure requires the calculation of pressure and tempera-
ture changes for a single stage, the stage exit conditions enabling the density at entry
to the following stage to be found. This calculation is repeated for each stage in turn
until the required final conditions are satisfied. However, for compressors having iden-
tical stages it is more convenient to resort to a simple compressible flow analysis. An
illustrative example is given below.

EXAMPLE 5.1. A multistage axial compressor is required for compressing air at 293
K, through a pressure ratio of 5 to 1. Each stage is to be 50% reaction and the mean
blade speed 275m/s, flow coefficient 0.5, and stage loading factor 0.3, are taken, for
simplicity, as constant for all stages. Determine the flow angles and the number of stages
required if the stage efficiency is 88.8%. Take Cp = 1.005kJ/(kg°C) and g = 1.4 for air.

Solution. From eqn. (5.14a) the stage load factor can be written as

From eqn. (5.11) the reaction is

Solving for tan b1 and tan b 2 gives

Calculating b1 and b 2 and observing for R = 0.5 that the velocity diagram is 
symmetrical,

Writing the stage load factor as y = CpDT0/U2, then the stage stagnation temperature
rise is
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It is reasonable to take the stage efficiency as equal to the polytropic efficiency since
the stage temperature rise of an axial compressor is small. Denoting compressor inlet
and outlet conditions by subscripts I and II respectively then, from eqn. (2.33),

where N is the required number of stages. Thus

A suitable number of stages is therefore 9.
The overall efficiency is found from eqn. (2.36).

Estimation of compressor stage efficiency
In eqn. (5.9) the amount of the actual stage work (h03 - h01) can be found from the

velocity diagram. The losses in total pressure may be estimated from cascade data.
These data are incomplete however, as it takes account of only the blade profile loss.
Howell (1945) has subdivided the total losses into three categories as shown in Figure
3.13.

(i) Profile losses on the blade surfaces.
(ii) Skin friction losses on the annulus walls.

(iii) “Secondary” losses by which he meant all losses not included in (i) and (ii) above.

In performance estimates of axial compressor and fan stages the overall drag coef-
ficient for the blades of each row is obtained from

(5.28)

using the empirical values given in Chapter 3.
Although the subject matter of this chapter is primarily concerned with two-

dimensional flows, there is an interesting three-dimensional aspect which cannot be
ignored. In multistage axial compressors the annulus wall boundary layers rapidly
thicken through the first few stages and the axial velocity profile becomes increasingly
peaked. This effect is illustrated in Figure 5.7, from the experimental results of Howell
(1945), which shows axial velocity traverses through a four-stage compressor. Over the
central region of the blade, the axial velocity is higher than the mean value based on
the through-flow. The mean blade section (and most of the span) will, therefore, do less
work than is estimated from the velocity triangles based on the mean axial velocity. In
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theory it would be expected that the tip and root sections would provide a compensa-
tory effect because of the low axial velocity in these regions. Due to stalling of these
sections (and tip leakage) no such work increase actually occurs, and the net result is
that the work done by the whole blade is below the design figure. Howell (1945) sug-
gested that the stagnation enthalpy rise across a stage could be expressed as

(5.29)

where l is a work done factor. For multistage compressors Howell recommended for
l a mean value of 0.86. Using a similar argument for axial turbines, the increase in
axial velocity at the pitch-line gives an increase in the amount of work done, which is
then roughly cancelled out by the loss in work done at the blade ends. Thus, for tur-
bines, no work done factor is required as a correction in performance calculations.

Other workers have suggested that l should be high at entry (0.96) where the annulus
wall boundary layers are thin, reducing progressively in the later stages of the com-
pressor (0.85). Howell & Bonham (1950) have given mean work done factors for com-
pressors with varying numbers of stages, as in Figure 5.8. For a four-stage compressor
the value of l would be 0.9 which would be applied to all four stages.

Smith (1970) commented upon the rather pronounced deterioration of compressor
performance implied by the example given in Figure 5.7 and suggested that things are
not so bad as suggested. As an example of modern practice he gave the axial velocity
distributions through a 12-stage axial compressor, Figure 5.9(a). This does illustrate
that rapid changes in velocity distribution still occur in the first few stages, but that the
profile settles down to a fairly constant shape thereafter. This phenomenon has been
referred to as ultimate steady flow.

Horlock (2000) used the term repeating stage that is “a stage deeply embedded in
the compressor where axial equilibrium state is reached,” which seems a more precise
description of the effect than the term ultimate steady flow.
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Smith also provided curves of the spanwise variation in total temperature, Figure
5.9b, which shows the way losses increase from midpassage towards the annulus walls.
An inspection of this figure shows also that the excess total temperature near the end
walls increases in magnitude and extent as the flow passes through the compressor.
Work on methods of predicting annulus wall boundary layers in turbomachines and
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(Courtesy of the Institution of Mechanical Engineers.)

FIG. 5.9. Traverse measurements obtained from a 12-stage compressor (Smith 1970).
(Courtesy of the Elsevier Publishing Co.)



their effects on performance are being actively pursued in many countries. Horlock
(2000) has reviewed several approaches to end-wall blockage in axial compressors, i.e.
Khalid et al. (1999), Smith (1970), Horlock and Perkins (1974). One conclusion drawn
was that Smith’s original data showed that axial blockage was strongly dependent on
tip clearance and stage pressure rise. Although the other approaches can give the prob-
able increase in blockage across a clearance row they are unable to predict the absolute
blockage levels. Horlock maintained that this information can be found only from data
such as Smith’s, although he conceded that it was possible that full computational fluid
dynamics calculations might provide reasonable answers.

EXAMPLE 5.2. The last stage of an axial flow compressor has a reaction of 50% at
the design operating point. The cascade characteristics, which correspond to each row
at the mean radius of the stage, are shown in Figure 3.12. These apply to a cascade of
circular arc camber line blades at a space–chord ratio 0.9, a blade inlet angle of 44.5
deg and a blade outlet angle of -0.5deg. The blade height–chord ratio is 2.0 and the
work done factor can be taken as 0.86 when the mean radius relative incidence (i -
i*)/e* is 0.4 (the operating point).

For this operating condition, determine

(i) the nominal incidence i* and nominal deflection e*;
(ii) the inlet and outlet flow angles for the rotor;

(iii) the flow coefficient and stage loading factor;
(iv) the rotor lift coefficient;
(v) the overall drag coefficient of each row;

(vi) the stage efficiency.

The density at entrance to the stage is 3.5kg/m3 and the mean radius blade speed is
242m/s. Assuming the density across the stage is constant and ignoring compressibil-
ity effects, estimate the stage pressure rise.

In the solution given below the relative flow onto the rotor is considered. The nota-
tion used for flow angles is the same as for Figure 5.2. For blade angles, b¢ is there-
fore used instead of a ¢ for the sake of consistency.

Solution. (i) The nominal deviation is found using eqns. (3.39) and (3.40). With the
camber q = b1¢ - b2¢ = 44.5° - (-0.5°) = 45° and the space chord ratio, s/l = 0.9, then

But

The nominal deflection e* = 0.8�max and, from Figure 3.12, emax = 37.5°. Thus, e* = 30°
and the nominal incidence is
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(ii) At the operating point i = 0.4e* + i* = 7.7°. Thus, the actual inlet flow angle is

From Figure 3.12 at i = 7.7°, the deflection e = 37.5° and the flow outlet angle is

(iii) From Figure 5.2, U = cx1(tana1 + tan b1) = cx2(tan a2 + tan b2). For cx = constant
across the stage and R = 0.5

and the flow coefficient is

The stage loading factor, y = Dh0 /U2 = lf(tan a2 - tan a1) using eqn. (5.29). Thus, with
l = 0.86,

(iv) The lift coefficient can be obtained using eqn. (3.18)

ignoring the small effect of the drag coefficient. Now tan bm = (tan b1 + tan b2)/2. Hence
bm = 37.8° and so

(v) Combining eqns. (3.7) and (3.17) the drag coefficient is

Again using Figure 3.12 at i = 7.7°, the profile total pressure loss coefficient Dp0 /( 1–
2 rw1

2)
= 0.032, hence the profile drag coefficient for the blades of either row is

Taking account of the annulus wall drag coefficient CDa and the secondary loss drag
coefficient CDs

Thus, the overall drag coefficient, CD = CDp
+ CDa

+ CDs
= 0.084 and this applies to

each row of blades. If the reaction had been other than 0.5 the drag coefficients for each
blade row would have been computed separately.
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(vi) The total-to-total stage efficiency, using eqn. (5.9) can be written as

where zR and zS are the overall total pressure loss coefficients for the rotor and stator
rows respectively. From eqn. (3.17)

Thus, with zS = zR

From eqn. (5.27), the pressure rise across the stage is

Stall and surge phenomena in compressors
Casing treatment

It was discovered in the late 1960s that the stall of a compressor could be delayed
to a lower mass flow by a suitable treatment of the compressor casing. Given the right
conditions this can be of great benefit in extending the range of stall-free operation.
Numerous investigations have since been carried out on different types of casing con-
figurations under widely varying flow conditions to demonstrate the range of useful-
ness of the treatment.

Greitzer et al. (1979) observed that two types of stall could be found in a compres-
sor blade row, namely, “blade stall” or “wall stall”. Blade stall is, roughly speaking, 
a two-dimensional type of stall where a significant part of the blade has a large wake
leaving the blade suction surface. Wall stall is a stall connected with the boundary layer
on the outer casing. Figure 5.10 illustrates the two types of stall. Greitzer et al. found
that the response to casing treatment depended conspicuously upon the type of stall
encountered.

The influence of a grooved casing treatment on the stall margin of a model axial
compressor rotor was investigated experimentally. Two rotor builds of different blade
solidities, s, (chord–space ratio) but with all the other parameters identical, were tested.
Greitzer et al. emphasised that the motive behind the use of different solidities was
simply a convenient way to change the type of stall from a blade stall to a wall stall
and that the benefit of casing treatment was unrelated to the amount of solidity of the
blade row. The position of the casing treatment insert in relation to the rotor blade row
is shown in Figure 5.11a and the appearance of the grooved surface used is illustrated
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in Figure 5.11b. The grooves, described as “axial skewed” and extending over the
middle 44% of the blade, have been used in a wide variety of compressors.

As predicted from their design study, the high solidity blading (s = 2) resulted in
the production of a wall stall, while the low solidity (s = 1) blading gave a blade stall.
Figure 5.12 shows the results obtained for non-dimensionalised wall static pressure rise,
Dp/( 1–

2 rU 2), across the rotor plotted against the mean radius flow coefficient, f = cx /U,
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for the four conditions tested. The extreme left end of each curve represents the onset
of stall. It can be seen that there is a marked difference in the curves for the two solidi-
ties. For the high solidity configuration there is a higher static peak pressure rise and
the decline does not occur until f is much lower than the low solidity configuration.
However, the most important difference in performance is the change in the stall point
with and without the casing treatment. It can be seen that with the grooved casing a
substantial change in the range of f occurred with the high solidity blading. However,
for the low solidity blading there is only a marginal difference in range. The shape of
the performance curve is significantly affected for the high solidity rotor blades, with
a substantial increase in the peak pressure rise brought about by the grooved casing
treatment.

The conclusion reached by Greitzer et al. (1979) is that casing treatment is highly
effective in delaying the onset of stall when the compressor row is more prone to wall
stall than blade stall. However, despite this advantage casing treatment has not been
generally adopted in industry. The major reason for this ostensible rejection of the
method appears to be that a performance penalty is attached to it. The more effective
the casing treatment, the more the stage efficiency is reduced.

Smith and Cumsty (1984) made an extensive series of experimental investigations
to try to discover the reasons for the effectiveness of casing treatment and the under-
lying causes for the loss in compressor efficiency. At the simplest level it was realised
that the slots provide a route for fluid to pass from the pressure surface to the suction
surface allowing a small proportion of the flow to be recirculated. The approaching
boundary layer fluid tends to have a high absolute swirl and is, therefore, suitably ori-
entated to enter the slots. Normally, with a smooth wall the high swirl would cause
energy to be wasted but, with the casing treatment, the flow entering the slot is turned
and reintroduced back into the main flow near the blade’s leading edge with its absolute
swirl direction reversed. The re-entrant flow has, in effect, flowed upstream along the
slot to a lower pressure region.
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Rotating stall and surge

A salient feature of a compressor performance map, such as Figure 1.10, is the 
limit to stable operation known as the surge line. This limit can be reached by reduc-
ing the mass flow (with a throttle valve) whilst the rotational speed is maintained 
constant.

When a compressor goes into surge the effects are usually quite dramatic. Generally,
an increase in noise level is experienced, indicative of a pulsation of the air flow and
of mechanical vibration. Commonly, a small number of predominant frequencies are
superimposed on a high background noise. The lowest frequencies are usually associ-
ated with a Helmholtz-type of resonance of the flow through the machine, with the inlet
and/or outlet volumes. The higher frequencies are known to be due to rotating stall and
are of the same order as the rotational speed of the impeller.

Rotating stall is a phenomenon of axial-compressor flow which has been the subject
of many detailed experimental and theoretical investigations and the matter is still not
fully resolved. An early survey of the subject was given by Emmons et al. (1959).
Briefly, when a blade row (usually the rotor of a compressor) reaches the “stall point”,
the blades instead of all stalling together as might be expected, stall in separate patches
and these stall patches, moreover, travel around the compressor annulus (i.e. they
rotate).

That stall patches must propagate from blade to blade has a simple physical expla-
nation. Consider a portion of a blade row, as illustrated in Figure 5.13 to be affected
by a stall patch. This patch must cause a partial obstruction to the flow which is
deflected on both sides of it. Thus, the incidence of the flow onto the blades on the right
of the stall cell is reduced, but the incidence to the left is increased. As these blades
are already close to stalling, the net effect is for the stall patch to move to the left; the
motion is then self-sustaining.

There is a strong practical reason for the wide interest in rotating stall. Stall patches
travelling around blade rows load and unload each blade at some frequency related 
to the speed and number of the patches. This frequency may be close to a natural 
frequency of blade vibration and there is clearly a need for accurate prediction of the
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FIG. 5.13. Model illustrating mechanism of stall cell propagation: partial blockage due
to stall patch deflects flow, increasing incidence to the left and decreasing incidence

to the right.



conditions producing such a vibration. Several cases of blade failure due to resonance
induced by rotating stall have been reported, usually with serious consequences to the
whole compressor.

It is possible to distinguish between surge and propagating stall by the unsteadiness,
or otherwise, of the total mass flow. The characteristic of stall propagation is that the
flow passing through the annulus, summed over the whole area, is steady with time;
the stall cells merely redistribute the flow over the annulus. Surge, on the other hand,
involves an axial oscillation of the total mass flow, a condition highly detrimental to
efficient compressor operation.

The conditions determining the point of surge of a compressor have not yet been
completely determined satisfactorily. One physical explanation of this breakdown of
the flow is given by Horlock (1958).

Figure 5.14 shows a constant rotor speed compressor characteristic (C ) of pressure
ratio plotted against flow coefficient. A second set of curves (T1, T2, etc.) are superim-
posed on this figure showing the pressure loss characteristics of the throttle for various
fixed throttle positions. The intersection of curves T with compressor curve C denotes
the various operating points of the combination. A state of flow stability exists if the
throttle curves at the point of intersection have a greater (positive) slope than the com-
pressor curve. That this is so may be illustrated as follows. Consider the operating point
at the intersection of T2 with C. If a small reduction of flow should momentarily occur,
the compressor will produce a greater pressure rise and the throttle resistance will fall.
The flow rate must, of necessity, increase so that the original operating point is restored.
A similar argument holds if the flow is temporarily augmented, so that the flow is com-
pletely stable at this operating condition.

If, now, the operating point is at point U, unstable operation is possible. A small
reduction in flow will cause a greater reduction in compressor pressure ratio than the
corresponding pressure ratio across the throttle. As a consequence of the increased
resistance of the throttle, the flow will decrease even further and the operating point U
is clearly unstable. By inference, neutral stability exists when the slopes of the throttle
pressure loss curves equal the compressor pressure rise curve.
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Tests on low pressure ratio compressors appear to substantiate this explanation of
instability. However, for high rotational speed multistage compressors the above argu-
ment does not seem sufficient to describe surging. With high speeds no stable opera-
tion appears possible on constant speed curves of positive slope and surge appears to
occur when this slope is zero or even a little negative. A more complete understanding
of surge in multistage compressors is only possible from a detailed study of the indi-
vidual stages’ performance and their interaction with one another.

Control of flow instabilities
Important and dramatic advances have been made in recent years in the under-

standing and controlling of surge and rotating stall. Both phenomena are now regarded
as the mature forms of the natural oscillatory modes of the compression system (see
Moore and Greizer 1986). The flow model they considered predicts that an initial dis-
turbance starts with a very small amplitude but quickly grows into a large amplitude
form. Thus, the stability of the compressor is equivalent to the stability of these small
amplitude waves that exist just prior to stall or surge (Haynes et al. 1994). Only a very
brief outline can be given of the advances in the understanding of these unstable flows
and the means now available for controlling them. Likewise only a few of the many
papers written on these topics are cited.

Epstein et al. (1989) first suggested that surge and rotating stall could be prevented
by using active feedback control to damp the hydrodynamic disturbances while they
were still of small amplitude. Active suppression of surge was subsequently demon-
strated on a centrifugal compressor by Ffowcs, Williams and Huang (1989), also by
Pinsley et al. (1991) and on an axial compressor by Day (1993). Shortly after this
Paduano et al. (1993) demonstrated active suppression of rotating stall in a single-stage
low-speed axial compressor. By damping the small amplitude waves rotating about the
annulus prior to stall, they increased the stable flow range of the compressor by 25%.
The control scheme adopted comprised a circumferential array of hot wires just
upstream of the compressor and a set of 12 individually actuated vanes upstream of the
rotor used to generate the rotating disturbance structure required for control. Haynes 
et al. (1994), using the same control scheme as Paduano et al., actively stabilised a
three-stage, low-speed axial compressor and obtained an 8% increase in the operating
flow range.

Gysling and Greitzer (1995) employed a different strategy using aeromechanical
feedback to suppress the onset of rotating stall in a low-speed axial compressor. Figure
5.15 shows a schematic of the aeromechanical feedback system they used. An auxil-
iary injection plenum chamber is fed by a high-pressure source so that high momen-
tum air is injected upsteam towards the compressor rotor. The amount of air injected
at a given circumferential position is governed by an array of locally reacting reed
valves able to respond to perturbations in the static pressure upstream of the compres-
sor. The reeds valves, which were modelled as mass-spring-dampers, regulated the
amount of high-pressure air injected into the face of the compressor. The cantilevered
reeds were designed to deflect upward to allow an increase of the injected flow, whereas
a downward deflection decreases the injection.
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A qualitative explanation of the stabilising mechanism has been given by Gysling
and Greitzer (1995):

Consider a disturbance to an initally steady, axisymmetric flow, which causes a
small decrease in axial velocity in one region of the compressor annulus. In this
region, the static pressure in the potential flow field upstream of the compressor
will increase. The increase in static pressure deflects the reed valves in that region,
increasing the amount of high momentum fluid injected and, hence, the local mass
flow and pressure rise across the compressor. The net result is an increase in pres-
sure rise across the compressor in the region of decreased axial velocity. The feed-
back thus serves to add a negative component to the real part of the compressor
pressure rise versus mass flow transfer function.

Only a small amount (4%) of the overall mass flow through the compressor was used
for aeromechanical feedback, enabling the stall flow coefficient of the compression
system to be reduced by 10% compared to the stalling flow coefficient with the same
amount of steady-state injection.

It is claimed that the research appears to be the first demonstration of dynamic control
of rotating stall in an axial compressor using aeromechanical feedback.

Axial-flow ducted fans
In essence, an axial-flow fan is simply a single-stage compressor of low-pressure

(and temperature) rise, so that much of the foregoing theory of this chapter is valid for
this class of machine. However, because of the high space–chord ratio used in many
axial fans, a simplified theoretical approach based on isolated aerofoil theory is often
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used. This method can be of use in the design of ventilating fans (usually of high
space–chord ratio) in which aerodynamic interference between adjacent blades can be
assumed negligible. Attempts have been made to extend the scope of isolated aerofoil
theory to less widely spaced blades by the introduction of an interference factor; for
instance, the ratio k of the lift force of a single blade in a cascade to the lift force of a
single isolated blade. As a guide to the degree of this interference, the exact solution
obtained by Weinig (1935) and used by Wislicenus (1947) for a row of thin flat plates
is of value and is shown in Figure 5.16. This illustrates the dependence of k on
space–chord ratio for several stagger angles. The rather pronounced effect of stagger
for moderate space–chord ratios should be noted as well as the asymptotic convergence
of k towards unity for higher space–chord ratios.

Two simple types of axial-flow fan are shown in Figure 5.17 in which the inlet and
outlet flows are entirely axial. In the first type (a), a set of guide vanes provides a contra-
swirl and the flow is restored to the axial direction by the rotor. In the second type (b),
the rotor imparts swirl in the direction of blade motion and the flow is restored to the
axial direction by the action of outlet straighteners (or outlet guide vanes). The theory
and design of both the above types of fan have been investigated by Van Niekerk (1958)
who was able to formulate expressions for calculating the optimum sizes and fan speeds
using blade element theory.

Blade element theory
A blade element at a given radius can be defined as an aerofoil of vanishingly small

span. In fan-design theory it is commonly assumed that each such element operates as
a two-dimensional aerofoil, behaving completely independently of conditions at any
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other radius. Now the forces impressed upon the fluid by unit span of a single station-
ary blade have been considered in some detail already, in Chapter 3. Considering an
element of a rotor blade dr, at radius r, the elementary axial and tangential forces, dX
and dY, respectively, exerted on the fluid are, referring to Figure 3.5,

(5.30)

(5.31)

where tanbm = 1–
2 {tanb1 + tan b 2} and L, D are the lift and drag on unit span of a blade.

Writing tan g = D/L = CD /CL then,

Introducing the lift coefficient CL = L/( 1–
2 rwm

2 l) for the rotor blade (cf. eqn. (3.16a)) into
the above expression and rearranging,

(5.32)

where cx = wm cosbm.
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The torque exerted by one blade element at radius r is rdY. If there are Z blades the
elementary torque is

after using eqn. (5.31). Substituting for L and rearranging,

(5.33)

Now the work done by the rotor in unit time equals the product of the stagnation
enthalpy rise and the mass flow rate; for the elementary ring of area 2prdr,

(5.34)

where W is the rotor angular velocity and the element of mass flow, dm
. = rcx2prdr.

Substituting eqn. (5.33) into eqn. (5.34), then

(5.35)

where s = 2pr/Z. Now the static temperature rise equals the stagnation temperature rise
when the velocity is unchanged across the fan; this, in fact, is the case for both types
of fan shown in Figure 5.17.

The increase in static pressure of the whole of the fluid crossing the rotor row may
be found by equating the total axial force on all the blade elements at radius r with the
product of static pressure rise and elementary area 2prdr, or

Using eqn. (5.32) and rearranging,

(5.36)

Note that, so far, all the above expressions are applicable to both types of fan shown
in Figure 5.17.

Blade element efficiency
Consider the fan type shown in Figure 5.17a fitted with guide vanes at inlet. The

pressure rise across this fan is equal to the rotor pressure rise (p2 - p1) minus the drop
in pressure across the guide vanes (pe - p1). The ideal pressure rise across the fan is
given by the product of density and CpDT0. Fan designers define a blade element 
efficiency

(5.37)

The drop in static pressure across the guide vanes, assuming frictionless flow for sim-
plicity, is
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(5.38)

Now since the change in swirl velocity across the rotor is equal and opposite to the
swirl produced by the guide vanes, the work done per unit mass flow, CpDT0 is equal
to Ucy1. Thus the second term in eqn. (5.37) is

(5.39)

Combining eqns. (5.35), (5.36) and (5.39) in eqn. (5.37) then,

(5.40a)

The foregoing exercise can be repeated for the second type of fan having outlet straight-
ening vanes, and assuming frictionless flow through the “straighteners”, the rotor blade
element efficiency becomes

(5.40b)

Some justification for ignoring the losses occurring in the guide vanes is found by
observing that the ratio of guide vane pressure change to rotor pressure rise is normally
small in ventilating fans. For example, in the first type of fan

the tangential velocity cy1 being rather small compared with the blade speed U.
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cambered aerofoils.



Lift coefficient of a fan aerofoil
For a specified blade element geometry, blade speed and lift–drag ratio the tem-

perature and pressure rises can be determined if the lift coefficient is known. An esti-
mate of lift coefficient is most easily obtained from two-dimensional aerofoil potential
flow theory. Glauert (1959) shows for isolated aerofoils of small camber and thickness
that

(5.41)

where a is the angle between the flow direction and line of zero lift of the aerofoil. For
an isolated, cambered aerofoil Wislicenus (1947) suggested that the zero lift line may
be found by joining the trailing edge point with the point of maximum camber as
depicted in Figure 5.18a. For fan blades experiencing some interference effects from
adjacent blades, the modified lift coefficient of a blade may be estimated by assuming
that Weinig’s results for flat plates (Figure 5.15) are valid for the slightly cambered,
finite thickness blades, and

(5.41a)

When the vanes overlap (as they may do at sections close to the hub), Wislicenus sug-
gested that the zero lift line may be obtained by the line connecting the trailing edge
point with the maximum camber of that portion of blade which is not overlapped
(Figure 5.18b).

The extension of both blade element theory and cascade data to the design of com-
plete fans is discussed in considerable detail by Wallis (1961).

References
Carchedi, F. and Wood, G. R. (1982). Design and development of a 12 :1 pressure ratio com-

pressor for the Ruston 6-MW gas turbine. J. Eng. Power, Trans. Am. Soc. Mech. Engrs., 104,
823–31.

Constant, H. (1945). The early history of the axial type of gas turbine engine. Proc. Instn. Mech.
Engrs., 153.

Cox, H. Roxbee. (1946). British aircraft gas turbines. J. Aero. Sci., 13.
Day, I. J. (1993). Stall inception in axial flow compressors. J. Turbomachinery, Trans. Am. Soc.

Mech. Engrs., 115, 1–9.
Emmons, H. W., Kronauer, R. E. and Rocket, J. A. (1959). A survey of stall propagation—exper-

iment and theory. Trans. Am. Soc. Mech. Engrs., Series D, 81.
Epstein, A. H., Ffowcs Williams, J. E. and Greitzer, E. M. (1989). Active suppression of aero-

dynamic instabilities in turbomachines. J. of Propulsion and Power, 5, 204–11.
Ffowcs Williams, J. E. and Huang, X. Y. (1989). Active stabilization of compressor surge. J.

Fluid Mech., 204, 204–62.
Glauert, H. (1959). The Elements of Aerofoil and Airscrew Theory. Cambridge Univ. Press.
Greitzer, E. M., Nikkanen, J. P., Haddad, D. E., Mazzawy, R. S. and Joslyn, H. D. (1979). A fun-

damental criterion for the application of rotor casing treatment. J. Fluid Eng., Trans. Am. Soc.
Mech. Engrs., 101, 237–43.

Gysling, D. L. and Greitzer, E. M. (1995). Dynamic control of rotating stall in axial flow com-
pressors using aeromechanical feedback. J. Turbomachinery, Trans. Am. Soc. Mech. Engrs.,
117, 307–19.

Axial-flow Compressors and Fans 173



Haynes, J. M., Hendricks, G. J. and Epstein, A. H. (1994). Active stabilization of rotating stall in
a three-stage axial compressor. J. Turbomachinery, Trans. Am. Soc. Mech. Engrs., 116, 226–37.

Horlock, J. H. (1958). Axial Flow Compressors. Butterworths (1973). (Reprint with supplemen-
tal material, Huntington, New York: Kreiger.)

Horlock, J. H. (2000). The determination of end-wall blockage in axial compressors: a compar-
ison between various approaches. J. Turbomachinery, Trans. Am. Soc. Mech. Engrs., 122, 218–24.

Horlock, J. H. and Perkins, H. J. (1974). Annulus wall boundary layers in turbomachines.
AGARDograph AG-185.

Howell, A. R. (1945). Fluid dynamics of axial compressors. Proc. Instn. Mech. Engrs., 153.
Howell, A. R. and Bonham, R. P. (1950). Overall and stage characteristics of axial flow com-

pressors. Proc. Instn. Mech. Engrs., 163.
Khalid, S. A., Khalsa, A. S., Waitz, I. A., Tan, C. S., Greitzer, E. M., Cumpsty, N. A., Adamczyk,

J. J., and Marble, F. E. (1999). Endwall blockage in axial compressors, J. Turbomachinery,
Trans. Am. Soc. Mech. Engrs., 121, 499–509.

Moore, F. K. and Greitzer, E. M. (1986). A theory of post stall transients in axial compression
systems: Parts I & II. J. Eng. Gas Turbines Power, Trans. Am. Soc. Mech. Engrs., 108, 68–76.

Paduano, J. P., et al., (1993). Active control of rotating stall in a low speed compressor. J.
Turbomachinery, Trans. Am. Soc. Mech. Engrs., 115, 48–56.

Pinsley, J. E., Guenette, G. R., Epstein, A. H. and Greitzer, E. M. (1991). Active stabilization of
centrifugal compressor surge. J. Turbomachinery, Trans. Am. Soc. Mech. Engrs., 113, 723–32.

Smith, G. D. J. and Cumpsty, N. A. (1984). Flow phenomena in compressor casing treatment. 
J. Eng. Gas Turbines and Power, Trans. Am. Soc. Mech. Engrs., 106, 532–41.

Smith, L. H., Jr. (1970). Casing boundary layers in multistage compressors. Proceedings of
Symposium on Flow Research on Blading, L. S. Dzung (ed.). Elsevier.

Stoney, G. (1937). Scientific activities of the late Hon. Sir Charles Parsons, F.R.S. Engineering,
144.

Van Niekerk, C. G. (1958). Ducted fan design theory. J. Appl. Mech., 25.
Wallis, R. A. (1961). Axial Flow Fans, Design and Practice. Newnes.
Weinig, F. (1935). Die Stroemung um die Schaufeln von Turbomaschinen, Joh. Ambr. Barth,

Leipzig.
Wennerstrom, A. J. (1989). Low aspect ratio axial flow compressors: Why and what it means. 

J. Turbomachinery, Trans. Am. Soc. Mech. Engrs., 111, 357–65.
Wennerstrom, A. J. (1990). Highly loaded axial flow compressors: History and current develop-

ment. J. Turbomachinery, Trans. Am. Soc. Mech. Engrs., 112, 567–78.
Wislicenus, G. F. (1947). Fluid Mechanics of Turbomachinery. McGraw-Hill.

Problems
(Note: In questions 1 to 4 and 8 take R = 287J/(kg°C) and g = 1.4.)

1. An axial flow compressor is required to deliver 50kg/s of air at a stagnation pressure of
500kPa. At inlet to the first stage the stagnation pressure is 100kPa and the stagnation temper-
ature is 23°C. The hub and tip diameters at this location are 0.436m and 0.728m. At the mean
radius, which is constant through all stages of the compressor, the reaction is 0.50 and the absolute
air angle at stator exit is 28.8deg for all stages. The speed of the rotor is 8000 rev/min. Determine
the number of similar stages needed assuming that the polytropic efficiency is 0.89 and that the
axial velocity at the mean radius is constant through the stages and equal to 1.05 times the average
axial velocity.

2. Derive an expression for the degree of reaction of an axial compressor stage in terms of
the flow angles relative to the rotor and the flow coefficient.

Data obtained from early cascade tests suggested that the limit of efficient working of an axial-
flow compressor stage occurred when
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(i) a relative Mach number of 0.7 on the rotor is reached;
(ii) the flow coefficient is 0.5;

(iii) the relative flow angle at rotor outlet is 30deg measured from the axial direction;
(iv) the stage reaction is 50%.

Find the limiting stagnation temperature rise which would be obtained in the first stage of an
axial compressor working under the above conditions and compressing air at an inlet stagnation
temperature of 289K. Assume the axial velocity is constant across the stage.

3. Each stage of an axial flow compressor is of 0.5 reaction, has the same mean blade speed
and the same flow outlet angle of 30deg relative to the blades. The mean flow coefficient is con-
stant for all stages at 0.5. At entry to the first stage the stagnation temperature is 278K, the stag-
nation pressure 101.3kPa, the static pressure is 87.3kPa and the flow area 0.372m2. Using
compressible flow analysis determine the axial velocity and the mass flow rate.

Determine also the shaft power needed to drive the compressor when there are six stages and
the mechanical efficiency is 0.99.

4. A 16-stage axial flow compressor is to have a pressure ratio of 6.3. Tests have shown that
a stage total-to-total efficiency of 0.9 can be obtained for each of the first six stages and 0.89 for
each of the remaining ten stages. Assuming constant work done in each stage and similar stages
find the compressor overall total-to-total efficiency. For a mass flow rate of 40kg/s determine the
power required by the compressor. Assume an inlet total temperature of 288K.

5. At a particular operating condition an axial flow compressor has a reaction of 0.6, a flow
coefficient of 0.5 and a stage loading, defined as Dh0/U 2 of 0.35. If the flow exit angles for each
blade row may be assumed to remain unchanged when the mass flow is throttled, determine the
reaction of the stage and the stage loading when the air flow is reduced by 10% at constant blade
speed. Sketch the velocity triangles for the two conditions.

Comment upon the likely behaviour of the flow when further reductions in air mass flow are
made.

6. The proposed design of a compressor rotor blade row is for 59 blades with a circular 
arc camber line. At the mean radius of 0.254m the blades are specified with a camber of 30deg,
a stagger of 40deg and a chord length of 30mm. Determine, using Howell’s correlation 
method, the nominal outlet angle, the nominal deviation and the nominal inlet angle. The tangent
difference approximation, proposed by Howell for nominal conditions (0 � a*2 � 40°), can be
used:

Determine the nominal lift coefficient given that the blade drag coefficient CD = 0.017.
Using the data for relative deflection given in Figure 3.17, determine the flow outlet angle and

lift coefficient when the incidence i = 1.8deg. Assume that the drag coefficient is unchanged from
the previous value.

7. The preliminary design of an axial flow compressor is to be based upon a simplified con-
sideration of the mean diameter conditions. Suppose that the stage characteristics of a repeating
stage of such a design are as follows:

Stagnation temperature rise 25°C
Reaction ratio 0.6
Flow coefficient 0.5
Blade speed 275m/s

The gas compressed is air with a specific heat at constant pressure of 1.005kJ/(kg°C). Assuming
constant axial velocity across the stage and equal absolute velocities at inlet and outlet, deter-
mine the relative flow angles for the rotor.
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Physical limitations for this compressor dictate that the space–chord ratio is unity at the mean
diameter. Using Howell’s correlation method, determine a suitable camber at the midheight of
the rotor blades given that the incidence angle is zero. Use the tangent difference approximation

for nominal conditions and the data of Figure 3.17 for finding the design deflection. (Hint. Use
several trial values of q to complete the solution.)

8. Air enters an axial flow compressor with a stagnation pressure and temperature of 100kPa
and 293K, leaving at a stagnation pressure of 600kPa. The hub and tip diameters at entry to the
first stage are 0.3m and 0.5m. The flow Mach number after the inlet guide vanes is 0.7 at the
mean diameter. At this diameter, which can be assumed constant for all the compressor stages,
the reaction is 50%, the axial velocity to mean blade speed ratio is 0.6 and the absolute flow
angle is 30deg at the exit from all stators. The type of blading used for this compressor is des-
ignated “free-vortex” and the axial velocity is constant for each stage.

Assuming isentropic flow through the inlet guide vanes (IGVs) and a small-stage efficiency
of 0.88, determine

(i) the air velocity at exit from the IGVs at the mean radius;
(ii) the air mass flow and rotational speed of the compressor;

(iii) the specific work done in each stage;
(iv) the overall efficiency of the compressor;
(v) the number of compressor stages required and the power needed to drive the compressor;

(vi) consider the implications of rounding the number of stages to an integer value if the pres-
sure ratio must be maintained at six for the same values of blade speed and flow coefficient.

N.B. In the following problems on axial-flow fans the medium is air for which the density is
taken to be 1.2kg/m3.

9. (a) The volume flow rate through an axial-flow fan fitted with inlet guide vanes is 2.5m3/s
and the rotational speed of the rotor is 2604 rev/min. The rotor blade tip radius is 23cm and the
root radius is 10cm. Given that the stage static pressure increase is 325Pa and the blade element
efficiency is 0.80, determine the angle of the flow leaving the guide vanes at the tip, mean and
root radii.

(b) A diffuser is fitted at exit to the fan with an area ratio of 2.5 and an effectiveness of
0.82. Determine the overall increase in static pressure and the air velocity at diffuser exit.

10. The rotational speed of a four-bladed axial-flow fan is 2900 rev/min. At the mean radius
of 16.5cm the rotor blades operate at CL = 0.8 with CD = 0.045. The inlet guide vanes produce
a flow angle of 20° to the axial direction and the axial velocity through the stage is constant at
20m/s.

For the mean radius, determine

(i) the rotor relative flow angles;
(ii) the stage efficiency;

(iii) the rotor static pressure increase;
(iv) the size of the blade chord needed for this duty.

11. A diffuser is fitted to the axial fan in the previous problem which has an efficiency of 70%
and an area ratio of 2.4. Assuming that the flow at entry to the diffuser is uniform and axial in
direction, and the losses in the entry section and the guide vanes are negligible, determine

(i) the static pressure rise and the pressure recovery factor of the diffuser;
(ii) the loss in total pressure in the diffuser;

(iii) the overall efficiency of the fan and diffuser.

tan tan . .b b1 2 1 55 1 1 5* *- = +( )s l
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CHAPTER 6

Three-dimensional Flows in
Axial Turbomachines
It cost much labour and many days before all these things were brought to
perfection. (DEFOE, Robinson Crusoe.)

Introduction
In Chapters 4 and 5 the fluid motion through the blade rows of axial turbomachines

was assumed to be two-dimensional in the sense that radial (i.e. spanwise) velocities
did not exist. This assumption is not unreasonable for axial turbomachines of high
hub–tip ratio. However, with hub–tip ratios less than about 4/5, radial velocities through
a blade row may become appreciable, the consequent redistribution of mass flow (with
respect to radius) seriously affecting the outlet velocity profile (and flow angle distri-
bution). The temporary imbalance between the strong centrifugal forces exerted on the
fluid and radial pressures restoring equilibrium is responsible for these radial flows.
Thus, to an observer travelling with a fluid particle, radial motion will continue until
sufficient fluid is transported (radially) to change the pressure distribution to that nec-
essary for equilibrium. The flow in an annular passage in which there is no radial com-
ponent of velocity, whose streamlines lie in circular, cylindrical surfaces and which is
axisymmetric, is commonly known as radial equilibrium flow.

An analysis called the radial equilibrium method, widely used for three-dimensional
design calculations in axial compressors and turbines, is based upon the assumption
that any radial flow which may occur is completed within a blade row, the flow outside
the row then being in radial equilibrium. Figure 6.1 illustrates the nature of this assump-
tion. The other assumption that the flow is axisymmetric implies that the effect of the
discrete blades is not transmitted to the flow.

Theory of radial equilibrium
Consider a small element of fluid of mass dm, shown in Figure 6.2, of unit depth

and subtending an angle dq at the axis, rotating about the axis with tangential veloc-
ity, cq at radius r. The element is in radial equilibrium so that the pressure forces balance
the centrifugal forces:
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Writing dm = rrdqdr and ignoring terms of the second order of smallness the above
equation reduces to

(6.1)

If the swirl velocity cq and density are known functions of radius, the radial pressure
variation along the blade length can be determined,

(6.2a)

For an incompressible fluid

(6.2b)

The stagnation enthalpy is written (with cr = 0)

(6.3)
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therefore,

(6.4)

The thermodynamic relation Tds = dh - (1/r)dp can be similarly written

(6.5)

Combining eqns. (6.1), (6.4) and (6.5), eliminating dp/dr and dh/dr, the radial equi-
librium equation may be obtained,

(6.6)

If the stagnation enthalpy h0 and entropy s remain the same at all radii, 
dh0/dr = ds/dr = 0, eqn. (6.6) becomes

(6.6a)

Equation (6.6a) will hold for the flow between the rows of an adiabatic, reversible
(ideal) turbomachine in which rotor rows either deliver or receive equal work at all
radii. Now if the flow is incompressible, instead of eqn. (6.3) use p0 = p + 1–

2

to obtain

(6.7)

Combining eqns. (6.1) and (6.7) then,

(6.8)

Equation (6.8) clearly reduces to eqn. (6.6a) in a turbomachine in which equal work is
delivered at all radii and the total pressure losses across a row are uniform with radius.

Equation (6.6a) may be applied to two sorts of problem as follows: (i) the design (or
indirect) problem—in which the tangential velocity distribution is specified and the
axial velocity variation is found, or (ii) the direct problem—in which the swirl angle
distribution is specified, the axial and tangential velocities being determined.

The indirect problem
Free-vortex flow

This is a flow where the product of radius and tangential velocity remains constant
(i.e. rcq = K, a constant). The term vortex-free might be more appropriate as the vor-
ticity (to be precise we mean axial vorticity component) is then zero.

Consider an element of an ideal inviscid fluid rotating about some fixed axis, as indi-
cated in Figure 6.3. The circulation G is defined as the line integral of velocity around
a curve enclosing an area A, or G = � cds. The vorticity at a point is defined as the lim-

p c cx
2 2+( )q
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iting value of circulation dG divided by area dA, as dA becomes vanishingly small. Thus
vorticity, w = dG/dA.

For the element shown in Figure 6.3, cr = 0 and

ignoring the product of small terms. Thus, w = dG/dA = (1/r)d(rcq)/dr. If the vorticity
is zero, d(rcq)/dr is also zero and, therefore, rcq is constant with radius.

Putting rcq = constant in eqn. (6.6a), then dcx /dr = 0 and so cx = a constant. This
information can be applied to the incompressible flow through a free-vortex compres-
sor or turbine stage, enabling the radial variation in flow angles, reaction and work to
be found.

Compressor stage. Consider the case of a compressor stage in which rcq1 = K1 before
the rotor and rcq2 = K2 after the rotor, where K1, K2 are constants. The work done by
the rotor on unit mass of fluid is

Thus, the work done is equal at all radii.
The relative flow angles (see Figure 5.2) entering and leaving the rotor are

in which cx1 = cx2 = cx for incompressible flow.
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In Chapter 5, reaction in an axial compressor is defined by

For a normal stage (a1 = a3) with cx constant across the stage, the reaction was shown
to be

(5.11)

Substituting values of tan b1 and tan b2 into eqn. (5.11), the reaction becomes

(6.9)

where

It will be clear that as k is positive, the reaction increases from root to tip. Likewise,
from eqn. (6.1) we observe that as c2

q /r is always positive (excepting cq = 0), so static
pressure increases from root to tip. For the free-vortex flow rcq = K, the static pressure
variation is obviously p/r = constant - K/(2r2) upon integrating eqn. (6.1).

EXAMPLE 6.1. An axial flow compressor stage is designed to give free-vortex 
tangential velocity distributions for all radii before and after the rotor blade row. 
The tip diameter is constant and 1.0m; the hub diameter is 0.9m and constant for the
stage. At the rotor tip the flow angles are as follows

Determine

(i) the axial velocity;
(ii) the mass flow rate;

(iii) the power absorbed by the stage;
(iv) the flow angles at the hub;
(v) the reaction ratio of the stage at the hub;

given that the rotational speed of the rotor is 6000 rev/min and the gas density is 
1.5kg/m3 which can be assumed constant for the stage. It can be further assumed that
stagnation enthalpy and entropy are constant before and after the rotor row for the
purpose of simplifying the calculations.

Solution. (i) The rotational speed, W = 2pN/60 = 628.4 rad/s.
Therefore blade tip speed, Ut = Wrt = 314.2m/s and blade speed at hub, Uh = Wrh =

282.5m/s.
From the velocity diagram for the stage (e.g. Figure 5.2), the blade tip speed is
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Therefore cx = 136m/s, constant at all radii by eqn. (6.6a).
(ii) The rate of mass flow, m

. = p(r 2
t - r 2

h)rcx = p(0.52 - 0.452)1.5 ¥ 136 =
30.4kg/s.

(iii) The power absorbed by the stage,

(iv) At inlet to the rotor tip,

The absolute flow is a free-vortex, rcq = constant.
Therefore cq1h = cq1t(rt /rh) = 78.6 ¥ 0.5/0.45 = 87.3m/s.
At outlet to the rotor tip,

Therefore cq2h = cq2t(rt/rh) = 235.6 ¥ 0.5/0.45 = 262m/s.
The flow angles at the hub are

Thus a1 = 32.75°, b1 = 55.15°, a2 = 62.6°, b2 = 8.64° at the hub.
(v) The reaction at the hub can be found by several methods. With eqn. (6.9)

and noticing that, from symmetry of the velocity triangles,

Therefore

The velocity triangles will be asymmetric and similar to those in Figure 5.4(b).
The simplicity of the flow under free-vortex conditions is, superficially, very attrac-

tive to the designer and many compressors have been designed to conform to this flow.
(Constant (1945, 1953) may be consulted for an account of early British compressor
design methods.) Figure 6.4 illustrates the variation of fluid angles and Mach numbers
of a typical compressor stage designed for free-vortex flow. Characteristic of this flow
are the large fluid deflections near the inner wall and high Mach numbers near the outer
wall, both effects being deleterious to efficient performance. A further serious disad-
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vantage is the large amount of rotor twist from root to tip which adds to the expense
of blade manufacture.

Many types of vortex design have been proposed to overcome some of the disad-
vantages set by free-vortex design and several of these are compared by Horlock (1958).
Radial equilibrium solutions for the work and axial velocity distributions of some of
these vortex flows in an axial compressor stage are given below.

Forced vortex

This is sometimes called solid-body rotation because cq varies directly with r. At
entry to the rotor assume h01 is constant and cq1 = K1r.

With eqn. (6.6a)

and, after integrating,

(6.10)

After the rotor cq2 = K2r and h02 - h01 = U(cq2 - cq1) = W(K2 - K1)r 2. Thus, as the work
distribution is non-uniform, the radial equilibrium equation in the form eqn. (6.6) is
required for the flow after the rotor.
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After re-arranging and integrating

(6.11)

The constants of integration in eqns. (6.10) and (6.11) can be found from the continu-
ity of mass flow, i.e.

(6.12)

which applies to the assumed incompressible flow.

General whirl distribution

The tangential velocity distribution is given by

(6.13a)

(6.13b)

The distribution of work for all values of the index n is constant with radius so that if
h01 is uniform, h02 is also uniform with radius. From eqns. (6.13)

(6.14)

Selecting different values of n gives several of the tangential velocity distributions
commonly used in compressor design. With n = 0, or zero power blading, it leads to
the so-called exponential type of stage design (included as an exercise at the end of
this chapter). With n = 1, or first power blading, the stage design is called (incorrectly,
as it transpires later) constant reaction.

First power stage design. For a given stage temperature rise the discussion in
Chapter 5 would suggest the choice of 50% reaction at all radii for the highest stage
efficiency. With swirl velocity distributions

(6.15)

before and after the rotor respectively, and rewriting the expression for reaction, eqn.
(5.11), as

(6.16)

then, using eqn. (6.15),

(6.17)

Implicit in eqn. (6.16) is the assumption that the axial velocity across the rotor remains
constant which, of course, is tantamount to ignoring radial equilibrium. The axial veloc-
ity must change in crossing the rotor row so that eqn. (6.17) is only a crude approxi-
mation at the best. Just how crude is this approximation will be indicated below.
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Assuming constant stagnation enthalpy at entry to the stage, integrating eqn. (6.6a),
the axial velocity distributions before and after the rotor are

(6.18a)

(6.18b)

More conveniently, these expressions can be written non-dimensionally as

(6.19a)

(6.19b)

in which Ut = Wrt is the tip blade speed. The constants A1, A2 are not entirely arbitrary
as the continuity equation, eqn. (6.12), must be satisfied.

EXAMPLE 6.2. As an illustration consider a single stage of an axial-flow air com-
pressor of hub–tip ratio 0.4 with a nominally constant reaction (i.e. according to eqn.
(6.17)) of 50%. Assuming incompressible, inviscid flow, a blade tip speed of 300m/s,
a blade tip diameter of 0.6m, and a stagnation temperature rise of 16.1°C, determine
the radial equilibrium values of axial velocity before and after the rotor. The axial veloc-
ity far upstream of the rotor at the casing is 120m/s. Take Cp for air as 1.005kJ/(kg°C).

Solution. The constants in eqn. (6.19) can be easily determined. From eqn. (6.17)

Combining eqns. (6.14) and (6.17)

The inlet axial velocity distribution is completely specified and the constant A1

solved. From eqn. (6.19a)

At r = rt, cx1/Ut = 0.4 and hence A1 = 0.66.
Although an explicit solution for A2 can be worked out from eqn. (6.19b) and eqn.

(6.12), it is far speedier to use a semigraphical procedure. For an arbitrarily selected
value of A2, the distribution of cx2/Ut is known. Values of (r/rt) · (cx2/Ut) and (r/rt) · (cx1/Ut)
are plotted against r/rt and the areas under these curves compared. New values of A2

are then chosen until eqn. (6.12) is satisfied. This procedure is quite rapid and normally
requires only two or three attempts to give a satisfactory solution. Figure 6.5 shows the
final solution of cx2/Ut obtained after three attempts. The solution is
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It is illuminating to calculate the actual variation in reaction taking account of 
the change in axial velocity. From eqn. (5.10c) the true reaction across a normal stage
is

From the velocity triangles, Figure 5.2,

As wq1 + wq2 = 2U - (cq1 + cq2) and wq1 - wq2 = cq2 - cq1,

For the first power swirl distribution, eqn. (6.15),

From the radial equilibrium solution in eqn. (6.19), after some rearrangement,
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where

In the above example, 1 - a/W = 1–
2 , yt = 0.18

The true reaction variation is shown in Figure 6.5 and it is evident that eqn. (6.17) is
invalid as a result of the axial velocity changes.

The direct problem
The flow angle variation is specified in the direct problem and the radial equilibrium

equation enables the solution of cx and cq to be found. The general radial equilibrium
equation can be written in the form

(6.20)

as cq = c sina.
If both dh0 /dr and ds/dr are zero, eqn. (6.20) integrated gives

or, if c = cm at r = rm, then

(6.21)

If the flow angle a is held constant, eqn. (6.21) simplifies still further,

(6.22)

The vortex distribution represented by eqn. (6.22) is frequently employed in practice
as untwisted blades are relatively simple to manufacture.

The general solution of eqn. (6.20) can be found by introducing a suitable integrat-
ing factor into the equation. Multiplying throughout by exp[2 Ú sin2 adr/r] it follows
that
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After integrating and inserting the limit c = cm at r = rm, then

(6.23)

Particular solutions of eqn. (6.23) can be readily obtained for simple radial distribu-
tions of a, h0 and s. Two solutions are considered here in which both 2dh0 /dr = kc2

m/rm

and ds/dr = 0, k being an arbitrary constant
(i) Let a = 2sin2 a. Then exp[2 Ú sin2 adr/r] = ra and, hence,

(6.23a)

Equation (6.22) is obtained immediately from this result with k = 0.
(ii) Let br/rm = 2sin2 a. Then,

and eventually,

(6.23b)

Compressible flow through a fixed blade row
In the blade rows of high-performance gas turbines, fluid velocities approaching, or

even exceeding, the speed of sound are quite normal and compressibility effects may
no longer be ignored. A simple analysis is outlined below for the inviscid flow of a
perfect gas through a fixed row of blades which, nevertheless, can be extended to the
flow through moving blade rows.

The radial equilibrium equation, eqn. (6.6), applies to compressible flow as well as
incompressible flow. With constant stagnation enthalpy and constant entropy, a free-
vortex flow therefore implies uniform axial velocity downstream of a blade row, regard-
less of any density changes incurred in passing through the blade row. In fact, for
high-speed flows there must be a density change in the blade row which implies a
streamline shift as shown in Figure 6.1. This may be illustrated by considering the free-
vortex flow of a perfect gas as follows. In radial equilibrium,

For reversible adiabatic flow of a perfect gas, r = Ep1/g, where E is constant. Thus
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therefore

(6.24)

For this free-vortex flow the pressure, and therefore the density also, must be larger at
the casing than at the hub. The density difference from hub to tip may be appreciable
in a high-velocity, high-swirl angle flow. If the fluid is without swirl at entry to the
blades the density will be uniform. Therefore, from continuity of mass flow there must
be a redistribution of fluid in its passage across the blade row to compensate for the
changes in density. Thus, for this blade row, the continuity equation is

(6.25)

where r2 is the density of the swirling flow, obtainable from eqn. (6.24).

Constant specific mass flow
Although there appears to be no evidence that the redistribution of the flow across

blade rows is a source of inefficiency, it has been suggested by Horlock (1966) that the
radial distribution of cq for each blade row is chosen so that the product of axial veloc-
ity and density is constant with radius, i.e.

(6.26)

where subscript m denotes conditions at r = rm. This constant specific mass flow design
is the logical choice when radial equilibrium theory is applied to compressible flows
as the assumption that cr = 0 is then likely to be realised.

Solutions may be determined by means of a simple numerical procedure and, as an
illustration of one method, a turbine stage is considered here. It is convenient to assume
that the stagnation enthalpy is uniform at nozzle entry, the entropy is constant through-
out the stage and the fluid is a perfect gas. At nozzle exit under these conditions the
equation of radial equilibrium, eqn. (6.20), can be written as

(6.27)

From eqn. (6.1), noting that at constant entropy the acoustic velocity a = ÷(dp/dr),

(6.28)

where the flow Mach number

(6.28a)

The isentropic relation between temperature and density for a perfect gas is

which after logarithmic differentiation gives
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(6.29)

Using the above set of equations the procedure for determining the nozzle exit flow
is as follows. Starting at r = rm, values of cm, am, Tm and rm are assumed to be known.
For a small finite interval Dr, the changes in velocity Dc, density Dr, and temperature
DT can be computed using eqns. (6.27), (6.28) and (6.29) respectively. Hence, at the
new radius r = rm + Dr the velocity c = cm + Dc, the density r = rm + Dr and temper-
ature T = Tm + DT are obtained. The corresponding flow angle a and Mach number M
can now be determined from eqns. (6.26) and (6.28a) respectively. Thus, all parame-
ters of the problem are known at radius r = rm + Dr. This procedure is repeated for
further increments in radius to the casing and again from the mean radius to the hub.

Figure 6.6 shows the distributions of flow angle and Mach number computed with
this procedure for a turbine nozzle blade row of 0.6 hub–tip radius ratio. The input data
used was am = 70.4deg and M = 0.907 at the mean radius. Air was assumed at a stag-
nation pressure of 859kPa and a stagnation temperature of 465K. A remarkable feature
of these results is the almost uniform swirl angle which is obtained.

With the nozzle exit flow fully determined the flow at rotor outlet can now be com-
puted by a similar procedure. The procedure is a little more complicated than that for
the nozzle row because the specific work done by the rotor is not uniform with radius.
Across the rotor, using the notation of Chapter 4,

(6.30)

and hence the gradient in stagnation enthalpy after the rotor is
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After differentiating the last term,

(6.30a)

the subscript 3 having now been dropped.
From eqn. (6.20) the radial equilibrium equation applied to the rotor exit flow is

(6.30b)

After logarithmic differentiation of rccosa = constant,

(6.31)

Eliminating successively dho between eqns. (6.30a) and (6.30b), dr/r between eqns.
(6.28) and (6.31) and finally da from the resulting equations gives

(6.32)

where Mx = Mcosa = ccosa /÷ (g RT) and the static temperature

(6.33)

The verification of eqn. (6.32) is left as an exercise for the diligent student.
Provided that the exit flow angle a3 at r = rm and the mean rotor blade speeds are

specified, the velocity distribution, etc., at rotor exit can be readily computed from these
equations.

Off-design performance of a stage
A turbine stage is considered here although, with some minor modifications, the

analysis can be made applicable to a compressor stage.
Assuming the flow is at constant entropy, apply the radial equilibrium equation, eqn.

(6.6), to the flow on both sides of the rotor, then

Therefore

Substituting cq3 = cx3 tan b3 - Wr into the above equation, then, after some simplifica-
tion,

(6.34)

In a particular problem the quantities cx2, cq2, b3 are known functions of radius and
W can be specified. Equation (6.34) is thus a first order differential equation in which
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cx3 is unknown and may best be solved, in the general case, by numerical iteration. This
procedure requires a guessed value of cx3 at the hub and, by applying eqn. (6.34) to a
small interval of radius Dr, a new value of cx3 at radius rh + Dr is found. By repeating
this calculation for successive increments of radius a complete velocity profile cx3 can
be determined. Using the continuity relation

this initial velocity distribution can be integrated and a new, more accurate, estimate of
cx3 at the hub then found. Using this value of cx3 the step-by-step procedure is repeated
as described and again checked by continuity. This iterative process is normally rapidly
convergent and, in most cases, three cycles of the calculation enable a sufficiently accu-
rate exit velocity profile to be found.

The off-design performance may be obtained by making the approximation that the
rotor relative exit angle b3 and the nozzle exit angle a2 remain constant at a particular
radius with a change in mass flow. This approximation is not unrealistic as cascade data
(see Chapter 3) suggest that fluid angles at outlet from a blade row alter very little with
change in incidence up to the stall point.

Although any type of flow through a stage may be successfully treated using this
method, rather more elegant solutions in closed form can be obtained for a few special
cases. One such case is outlined below for a free-vortex turbine stage whilst other cases
are already covered by eqns. (6.21)–(6.23).

Free-vortex turbine stage
Suppose, for simplicity, a free-vortex stage is considered where, at the design point,

the flow at rotor exit is completely axial (i.e. without swirl). At stage entry the flow is
again supposed completely axial and of constant stagnation enthalpy h01. Free-vortex
conditions prevail at entry to the rotor, rcq2 = rcx2 tan a2 = constant. The problem is to
find how the axial velocity distribution at rotor exit varies as the mass flow is altered
away from the design value.

At off-design conditions the relative rotor exit angle b 3 is assumed to remain equal
to the value b* at the design mass flow (* denotes design conditions). Thus, referring
to the velocity triangles in Figure 6.7, at off-design conditions the swirl velocity cq3 is
evidently non-zero,

(6.35)

At the design condition, c*q3 = 0 and so

(6.36)

Combining eqns. (6.35) and (6.36)

(6.37)

The radial equilibrium equation at rotor outlet gives
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(6.38)

after combining with eqn. (6.33), noting that dh02/dr = 0 and that (d/dr)(rcq2) = 0 at all
mass flows. From eqn. (6.37),

which when substituted into eqn. (6.38) gives

After rearranging,

(6.39)

Equation (6.39) is immediately integrated in the form

(6.40)

where cx3 = cx3m at r = rm. Equation (6.40) is more conveniently expressed in a non-
dimensional form by introducing flow coefficients f = cx3 /Um, f* = c*x3 /Um and fm =
cx3m/Um. Thus,
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(6.40a)

If rm is the mean radius then cx3m � cx1 and, therefore, fm provides an approximate
measure of the overall flow coefficient for the machine (N.B. cx1 is uniform).

The results of this analysis are shown in Figure 6.8 for a representative design flow
coefficient f* = 0.8 at several different off-design flow coefficients fm, with r/rm = 0.8
at the hub and r/rm = 1.2 at the tip. It is apparent for values of fm < f*, that cx3 increases
from hub to tip; conversely for fm > f*, cx3 decreases towards the tip.

The foregoing analysis is only a special case of the more general analysis of free-
vortex turbine and compressor flows (Horlock and Dixon 1966) in which rotor exit
swirl, rc*q3 is constant (at design conditions), is included. However, from Horlock and
Dixon, it is quite clear that even for fairly large values of a*3m, the value of f is little
different from the value found when a*3 = 0, all other factors being equal. In Figure 6.8
values of f are shown when a*3m = 31.4° at fm = 0.4(f* = 0.8) for comparison with the
results obtained when a*3 = 0.

It should be noted that the rotor efflux flow at off-design conditions is not a free
vortex.

Actuator disc approach
In the radial equilibrium design method it was assumed that all radial motion took

place within the blade row. However, in most turbomachines of low hub–tip ratio,
appreciable radial velocities can be measured outside of the blade row. Figure 6.9, taken

194 Fluid Mechanics, Thermodynamics of Turbomachinery

FIG. 6.8. Off-design rotor exit flow coefficients.



from a review paper by Hawthorne and Horlock (1962), shows the distribution of the
axial velocity component at various axial distances upstream and downstream of an
isolated row of stationary inlet guide vanes. This figure clearly illustrates the appre-
ciable redistribution of flow in regions outside of the blade row and that radial veloc-
ities must exist in these regions. For the flow through a single row of rotor blades, the
variation in pressure (near the hub and tip) and variation in axial velocity (near the
hub), both as functions of axial position, are shown in Figure 6.10, also taken from
Hawthorne and Horlock. Clearly, radial equilibrium is not established entirely within
the blade row.

A more accurate form of three-dimensional flow analysis than radial equilibrium
theory is obtained with the actuator disc concept. The idea of an actuator disc is quite
old and appears to have been first used in the theory of propellers; it has since evolved
into a fairly sophisticated method of analysing flow problems in turbomachinery. To
appreciate the idea of an actuator disc, imagine that the axial width of each blade row
is shrunk while, at the same time, the space–chord ratio, the blade angles and overall
length of machine are maintained constant. As the deflection through each blade row
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for a given incidence is, apart from Reynolds number and Mach number effects (cf.
Chapter 3 on cascades), fixed by the cascade geometry, a blade row of reduced width
may be considered to affect the flow in exactly the same way as the original row. In
the limit as the axial width vanishes, the blade row becomes, conceptually, a plane dis-
continuity of tangential velocity—the actuator disc. Note that while the tangential

196 Fluid Mechanics, Thermodynamics of Turbomachinery
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velocity undergoes an abrupt change in direction, the axial and radial velocities are 
continuous across the disc.

An isolated actuator disc is depicted in Figure 6.11 with radial equilibrium established
at fairly large axial distances from the disc. An approximate solution to the velocity
fields upstream and downstream of the actuator can be found in terms of the axial velo-
city distributions far upstream and far downstream of the disc. The detailed analysis
exceeds the scope of this book, involving the solution of the equations of motion, the
equation of continuity and the satisfaction of boundary conditions at the walls and disc.
The form of the approximate solution is of considerable interest and is quoted below.

For convenience, conditions far upstream and far downstream of the disc are denoted
by subscripts •1 and •2 respectively (Figure 6.11). Actuator disc theory proves that
at the disc (x = 0), at any given radius, the axial velocity is equal to the mean of the
axial velocities at •1 and •2 at the same radius, or

(6.41)

Subscripts 01 and 02 denote positions immediately upstream and downstream respec-
tively of the actuator disc. Equation (6.41) is known as the mean-value rule.

In the downstream flow field (x � 0), the difference in axial velocity at some posi-
tion (x, rA) to that at position (x = •, rA) is conceived as a velocity perturbation.
Referring to Figure 6.12, the axial velocity perturbation at the disc (x = 0, rA) is denoted
by D0 and at position (x, rA) by D. The important result of actuator disc theory is that
velocity perturbations decay exponentially away from the disc. This is also true for the
upstream flow field (x � 0). The result obtained for the decay rate is

(6.42)

where the minus and plus signs above apply to the flow regions x � 0 and x � 0
respectively. Equation (6.42) is often called the settling-rate rule. Since cx1 = cx01 + D,
cx2 = cx02 - D and noting that , eqns. (6.41) and (6.42) combine to give

(6.43a)

(6.43b)

D0
1
2 1 2= -( )• •c cx x
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FIG. 6.11. The actuator disc assumption (after Horlock 1958).



At the disc, x = 0, eqn. (6.43) reduces to eqn. (6.41). It is of particular interest to note,
in Figures 6.9 and 6.10, how closely isolated actuator disc theory compares with experi-
mentally derived results.

Blade row interaction effects
The spacing between consecutive blade rows in axial turbomachines is usually suf-

ficiently small for mutual flow interactions to occur between the rows. This interfer-
ence may be calculated by an extension of the results obtained from isolated actuator
disc theory. As an illustration, the simplest case of two actuator discs situated a dis-
tance d apart from one another is considered. The extension to the case of a large
number of discs is given in Hawthorne and Horlock (1962).

Consider each disc in turn as though it were in isolation. Referring to Figure 6.13,
disc A, located at x = 0, changes the far upstream velocity cx•1 to cx•2 far downstream.
Let us suppose for simplicity that the effect of disc B, located at x = d, exactly cancels
the effect of disc A (i.e. the velocity far upstream of disc B is cx•2 which changes to
cx•1 far downstream). Thus, for disc A in isolation,

(6.44)

(6.45)

where |x| denotes modulus of x and H = rt - rh.
For disc B in isolation,

(6.46)

(6.47)

Now the combined effect of the two discs is most easily obtained by extracting from
the above four equations the velocity perturbations appropriate to a given region and
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FIG. 6.12. Variation in axial velocity with axial distance from the actuator disc.



adding these to the related radial equilibrium velocity for x � 0, and to cx•1 the
perturbation velocities from eqns. (6.44) and (6.46)

(6.48)

For the region 0 � x � d,

(6.49)

For the region x � d,

(6.50)

Figure 6.13 indicates the variation of axial velocity when the two discs are regarded
as isolated and when they are combined. It can be seen from the above equations that
as the gap between these two discs is increased, so the perturbations tend to vanish.
Thus in turbomachines where d/r is fairly small (e.g. the front stages of aircraft axial
compressors or the rear stages of condensing steam turbines), interference effects are
strong and one can infer that the simpler radial equilibrium analysis is then inadequate.

Computer-aided methods of solving the 
through-flow problem

Although actuator disc theory has given a better understanding of the complicated
meridional (the radial-axial plane) through-flow problem in turbomachines of simple
geometry and flow conditions, its application to the design of axial-flow compressors
has been rather limited. The extensions of actuator disc theory to the solution of the
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complex three-dimensional, compressible flows in compressors with varying hub and
tip radii and non-uniform total pressure distributions were found to have become too
unwieldy in practice. In recent years advanced computational methods have been suc-
cessfully evolved for predicting the meridional compressible flow in turbomachines
with flared annulus walls.

Through-flow methods

In any of the so-called through-flow methods the equations of motion to be solved are
simplified. First, the flow is taken to be steady in both the absolute and relative frames
of reference. Secondly, outside of the blade rows the flow is assumed to be axisym-
metric, which means that the effects of wakes from an upstream blade row are under-
stood to have “mixed out” so as to give uniform circumferential conditions. Within the
blade rows the effects of the blades themselves are modelled by using a passage aver-
aging technique or an equivalent process. Clearly, with these major assumptions, solu-
tions obtained with these through-flow methods can be only approximations to the real
flow. As a step beyond this Stow (1985) has outlined the ways, supported by equations,
of including the viscous flow effects into the flow calculations.

Three of the most widely used techniques for solving through-flow problems are:

(i) Streamline curvature, which is based on an iterative procedure, is described in some
detail by Macchi (1985) and earlier by Smith (1966). It is the oldest and most
widely used method for solving the through-flow problem in axial-flow turboma-
chines and has with the intrinsic capability of being able to handle variously shaped
boundaries with ease. The method is widely used in the gas turbine industry.

(ii) Matrix through-flow or finite difference solutions (Marsh 1968), where computa-
tions of the radial equilibrium flow field are made at a number of axial locations
within each blade row as well as at the leading and trailing edges and outside of
the blade row. An illustration of a typical computing mesh for a single blade row
taken from Macchi (1985) is shown in Figure 6.14.
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(iii) Time-marching (Denton 1985), where the computation starts from some assumed
flow field and the governing equations are marched forward with time. The
method, although slow because of the large number of iterations needed to reach
a convergent solution, can be used to solve both subsonic and supersonic flow.
With the present design trend towards highly loaded blade rows, which can include
patches of supersonic flow, this design method has considerable merit.

All three methods solve the same equations of fluid motion, energy and state for an
axisymmetric flow through a turbomachine with varying hub and tip radii and there-
fore lead to the same solution.  According to Denton and Dawes (1999) the streamline
curvature method remains the dominant numerical scheme amongst the above through-
flow methods because of its simplicity and ability to cope with mixed subsonic/super-
sonic flows. The only alternative method commonly used is the stream function method.
In effect the same equations are solved as the streamline curvature method except that
an axisymmetric stream function is employed as the primary variable. This method does
have the advantage of simplifying the numerics by satisfying the continuity equation
via the boundary conditions of the stream function at the hub and casing. However, this
method fails when the flow becomes transonic because then there are two possible
velocity distributions and it is not obvious whether to take the subsonic or the super-
sonic solution.

Application of Computational Fluid Dynamics (CFD) to
the design of axial turbomachines

Up to about 1990 the aerodynamic design of most axial turbomachines was executed
by the aforementioned “through-flow” methods. The use of these models depended
upon a long and slow process of iteration. The way this worked was to design and build
a machine from the existing database. Then, from tests done on the fabricated hard-
ware the existing flow correlations would be updated and applied to obtain a new
axisymmetric design of the configuration. Although this approach did often produce
excellent machines with outstanding aerodynamic performance, the demand for more
rapid methods at less cost forced a major reappraisal of the methodology used. The
foundation of this new methodology required aerodynamic models with a resolution
greater than the previously used axisymmetric flow models. As well as this it was essen-
tial that the models used could complete the task in a matter of hours rather than weeks.

Over the last decade there have been numerous papers reviewing the state of art and
developments of CFD as applied to turbomachinery design and flow prediction. Only
a few of these papers are considered here, and then only rather briefly. Adamczyk (2000)
presented a particularly impressive and valuable paper summarising the state of three-
dimensional CFD based models of the time-averaged flow within axial flow multistage
turbomachines. His paper placed emphasis on models that are compatible with the
industrial design environment and would offer the potential of providing credible results
at both design and off-design operating conditions. Adamczyk laid stress on the need
to develop models free of aerodynamic input from semi empirical design data. He 
developed a model referred to as the average-passage flow model which described the
time-averaged flow field within a typical blade passage of a blade row embedded within
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a multistage configuration. The resulting flow field is periodic over the pitch of the
blade row of interest.* With this model the geometry is the input and the output is the
flow field generated by the geometry. During the design process, geometry updates are
derived exclusively from results obtained with the average-passage model. The credi-
bility of an average-passage flow simulation is not tied to aerodynamic matching infor-
mation provided by a through-flow system or data match. The credibility is, in fact,
linked to the models used to account for the effects of the unsteady flow environment
on the average-passage flow field. The effect of the unsteady deterministic flow field
on aerodynamic matching of stages is accounted for by velocity correlations within the
momentum equations.†

According to Horlock and Denton (2003) modern turbomachinery design relies
almost completely on CFD to develop three-dimensional blade sections. Simple
methods of determining performance with empirical input, such as described in this
book, are still needed for the mean radius design and for through-flow calculations. It
is often emphasised by experienced designers that if the one-dimensional preliminary
design is incorrect, e.g. the blade diffusion factors and stage loading, then no amount
of CFD will produce a good design! What CFD does provide is the ability to exploit
the three-dimensional nature of the flow to suppress deleterious features such as corner
stall in compressors or strong secondary flows in turbines.

Again, Horlock and Denton have indicated that loss predictions by CFD are still not
accurate and that interpretation of the computations requires considerable skill and
experience. Good physical understanding and judgement of when the flow has been
improved remain very important. There are many reported examples of the successful
use of CFD to improve designs but, it is suspected, many unreported failures. Examples
of success are the use of bowed blades to control secondary loss in turbines and the
use of sweep and bow to control to reduce corner separations in compressors. Both of
these techniques are now routinely employed in production machines.

The outlook for CFD is that its capabilities are continuously developing and that
future trubomachinery will be more dependent on it than they are at present. The current
trend, as outlined in some detail by Adamczyk (2000), is towards multistage and
unsteady flow computations. Both of these will certainly require even more computer
power than is presently available.

Secondary flows
No account of three-dimensional motion in axial turbomachines would be complete

without giving, at least, a brief description of secondary flow. When a fluid particle
possessing rotation is turned (e.g. by a cascade) its axis of rotation is deflected in a
manner analogous to the motion of a gyroscope, i.e. in a direction perpendicular to the
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i.e. imparting or extracting energy, because of the unsteady flow effects which are taking place within
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of the rotor and not to small-scale turbulence.

†The term unsteady deterministic refers to all time-dependent behaviour linked to shaft rotational
speed. All unsteady behaviour not linked to shaft rotational speed is referred to as non-deterministic.



direction of turning. The result of turning the rotation (or vorticity) vector is the for-
mation of secondary flows. The phenomenon must occur to some degree in all turbo-
machines but is particularly in evidence in axial-flow compressors because of the thick
boundary layers on the annulus walls. This case has been discussed in some detail by
Horlock (1958), Preston (1953), Carter (1948) and many other writers.

Consider the flow at inlet to the guide vanes of a compressor to be completely axial
and with a velocity profile as illustrated in Figure 6.15. This velocity profile is non-
uniform as a result of friction between the fluid and the wall; the vorticity of this bound-
ary layer is normal to the approach velocity c1 and of magnitude

(6.51)

where z is distance from the wall.
The direction of w1 follows from the right-hand screw rule and it will be observed

that w1 is in opposite directions on the two annulus walls. This vector is turned by the
cascade, thereby generating secondary vorticity parallel to the outlet stream direction.
If the deflection angle e is not large, the magnitude of the secondary vorticity ws is,
approximately,

(6.52)

A swirling motion of the cascade exit flow is associated with the vorticity ws, as shown
in Figure 6.16, which is in opposite directions for the two wall boundary layers. This
secondary flow will be the integrated effect of the distribution of secondary vorticity
along the blade length.

Now if the variation of c1 with z is known or can be predicted, then the distribution
of ws along the blade can be found using eqn. (6.52). By considering the secondary
flow to be small perturbation of the two-dimensional flow from the vanes, the flow
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FIG. 6.15. Secondary vorticity produced by a row of guide vanes.



angle distribution can be calculated using a series solution developed by Hawthorne
(1955). The actual analysis lies outside the scope (and purpose) of this book, however.
Experiments on cascade show excellent agreement with these calculations provided
there are but small viscous effects and no flow separations. Such a comparison has been
given by Horlock (1963) and a typical result is shown in Figure 6.17. It is clear that
the flow is overturned near the walls and underturned some distance away from the
walls. It is known that this overturning is a source of inefficiency in compressors as it
promotes stalling at the blade extremities.
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FIG. 6.16. Secondary flows at exit from a blade passage 
(viewed in upstream direction).

FIG. 6.17. Exit air angle from inlet guide vanes (adapted from Horlock 1963).
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Problems

1. Derive the radial equilibrium equation for an incompressible fluid flowing with axisym-
metric swirl through an annular duct.

Air leaves the inlet guide vanes of an axial flow compressor in radial equilibrium and with a
free-vortex tangenital velocity distribution. The absolute static pressure and static temperature at
the hub, radius 0.3m, are 94.5kPa and 293K respectively. At the casing, radius 0.4m, the absolute
static pressure is 96.5kPa. Calculate the flow angles at exit from the vanes at the hub and casing
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when the inlet absolute stagnation pressure is 101.3kPa. Assume the fluid to be inviscid and
incompressible. (Take R = 0.287kJ/(kg°C) for air.)

2. A gas turbine stage has an initial absolute pressure of 350kPa and a temperature of 565°C
with negligible initial velocity. At the mean radius, 0.36m, conditions are as follows:

Nozzle exit flow angle 68deg
Nozzle exit absolute static pressure 207kPa
Stage reaction 0.2

Determine the flow coefficient and stage loading factor at the mean radius and the reaction at
the hub, radius 0.31m, at the design speed of 8000 rev/min, given that stage is to have a free-
vortex swirl at this speed. You may assume that losses are absent. Comment upon the results you
obtain.

(Take Cp = 1.148kJ(kg°C) and g = 1.33.)

3. Gas enters the nozzles of an axial flow turbine stage with uniform total pressure at a uniform
velocity c1 in the axial direction and leaves the nozzles at a constant flow angle a2 to the axial
direction. The absolute flow leaving the rotor c3 is completely axial at all radii.

Using radial equilibrium theory and assuming no losses in total pressure show that

where Um is the mean blade speed,
cqm2 is the tangential velocity component at nozzle exit at the mean radius r = rm.

(Note: The approximate c3 = c1 at r = rm is used to derive the above expression.)

4. Gas leaves an untwisted turbine nozzle at an angle a to the axial direction and in radial
equilibrium. Show that the variation in axial velocity from root to tip, assuming total pressure is
constant, is given by

Determine the axial velocity at a radius of 0.6m when the axial velocity is 100m/s at a radius
of 0.3m. The outlet angle a is 45deg.

5. The flow at the entrance and exit of an axial-flow compressor rotor is in radial equilibrium.
The distributions of the tangential components of absolute velocity with radius are

where a and b are constants. What is the variation of work done with radius? Deduce expres-
sions for the axial velocity distributions before and after the rotor, assuming incompressible flow
theory and that the radial gradient of stagnation pressure is zero.

At the mean radius, r = 0.3m, the stage loading coefficient, y = DW/U2
t is 0.3, the reaction

ratio is 0.5 and the mean axial velocity is 150m/s. The rotor speed is 7640 rev/min. Determine
the rotor flow inlet and outlet angles at a radius of 0.24m given that the hub–tip ratio is 0.5.
Assume that at the mean radius the axial velocity remained unchanged (cx1 = cx2 at r = 0.3m).
(Note: DW is the specific work and Ut the blade tip speed.)

6. An axial-flow turbine stage is to be designed for free-vortex conditions at exit from the
nozzle row and for zero swirl at exit from the rotor. The gas entering the stage has a stagnation
temperature of 1000K, the mass flow rate is 32kg/s, the root and tip diameters are 0.56m and
0.76m respectively, and the rotor speed is 8000 rev/min. At the rotor tip the stage reaction is 50%
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and the axial velocity is constant at 183m/s. The velocity of the gas entering the stage is equal
to that leaving.

Determine

(i) the maximum velocity leaving the nozzles;
(ii) the maximum absolute Mach number in the stage;

(iii) the root section reaction;
(iv) the power output of the stage;
(v) the stagnation and static temperatures at stage exit.

(Take R = 0.287kJ/(kg°C) and Cp = 1.147kJ/(kg°C).)

7. The rotor blades of an axial-flow turbine stage are 100mm long and are designed to receive
gas at an incidence of 3deg from a nozzle row. A free-vortex whirl distribution is to be main-
tained between nozzle exit and rotor entry. At rotor exit the absolute velocity is 150m/s in the
axial direction at all radii. The deviation is 5deg for the rotor blades and zero for the nozzle
blades at all radii. At the hub, radius 200mm, the conditions are as follows:

Nozzle outlet angle 70deg
Rotor blade speed 180m/s
Gas speed at nozzle exit 450m/s

Assuming that the axial velocity of the gas is constant across the stage, determine
(i) the nozzle outlet angle at the tip;

(ii) the rotor blade inlet angles at hub and tip;
(iii) the rotor blade outlet angles at hub and tip;
(iv) the degree of reaction at root and tip.

Why is it essential to have a positive reaction in a turbine stage?

8. The rotor and stator of an isolated stage in an axial-flow turbomachine are to be repre-
sented by two actuator discs located at axial positions x = 0 and x = d respectively. The hub and
tip diameters are constant and the hub–tip radius ratio rh /rt is 0.5. The rotor disc considered on
its own has an axial velocity of 100m/s far upstream and 150m/s downstream at a constant radius
r = 0.75rt. The stator disc in isolation has an axial velocity of 150m/s far upstream and 100m/s
far downstream at radius r = 0.75rt. Calculate and plot the axial velocity variation between 
-0.5 � x/rt � 0.6 at the given radius for each actuator disc in isolation and for the combined
discs when
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CHAPTER 7

Centrifugal Pumps, 
Fans and Compressors
And to thy speed add wings. (MILTON, Paradise Lost.)

Introduction
This chapter is concerned with the elementary flow analysis and preliminary design

of radial-flow work-absorbing turbomachines comprising pumps, fans and compres-
sors. The major part of the discussion is centred around the compressor since the basic
action of all these machines is, in most respects, the same.

Turbomachines employing centrifugal effects for increasing fluid pressure have been
in use for more than a century. The earliest machines using this principle were, undoubt-
edly, hydraulic pumps followed later by ventilating fans and blowers. Cheshire (1945)
recorded that a centrifugal compressor was incorporated in the build of the whittle 
turbojet engine.

For the record, the first successful test flight of an aircraft powered by a turbojet
engine was on August 27, 1939 at Marienebe Airfield, Waruemunde, Germany
(Gas Turbine News 1989). The engine, designed by Hans von Ohain, incorporated
an axial flow compressor. The Whittle turbojet engine, with the centrifugal com-
pressor, was first flown on May 15, 1941 at Cranwell, England (see Hawthorne
1978).

Development of the centrifugal compressor continued into the mid-1950s but, long
before this, it had become abundantly clear (Campbell and Talbert 1945, Moult and
Pearson 1951) that for the increasingly larger engines required for aircraft propulsion
the axial flow compressor was preferred. Not only were the frontal area (and drag)
smaller with engines using axial compressors but also the efficiency for the same duty
was better by as much as 3 or 4%. However, at very low air mass flow rates the effi-
ciency of axial compressors drops sharply, blading is small and difficult to make accu-
rately and the advantage lies with the centrifugal compressor.

In the mid-1960s the need for advanced military helicopters powered by small gas
turbine engines provided the necessary impetus for further rapid development of the
centrifugal compressor. The technological advances made in this sphere provided a spur
to designers in a much wider field of existing centrifugal compressor applications, e.g.
in small gas turbines for road vehicles and commercial helicopters as well as for diesel
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engine turbochargers, chemical plant processes, factory workshop air supplies and
large-scale air-conditioning plant, etc.

Centrifugal compressors were the reasoned choice for refrigerating plants and com-
pression-type heat pumps used in district heating schemes described by Hess (1985).
These compressors with capacities ranging from below 1MW up to nearly 30MW were
preferred because of their good economy, low maintenance and absolute reliability.
Dean (1973) quoted total-to-static efficiencies of 80–84% for small single-stage cen-
trifugal compressors with pressure ratios of between 4 and 6. Higher pressure ratios
than this have been achieved in single stages, but at reduced efficiency and a very
limited airflow range (i.e. up to surge). For instance, Schorr et al. (1971) designed and
tested a single-stage centrifugal compressor which gave a pressure ratio of 10 at an effi-
ciency of 72% but having an airflow range of only 10% at design speed.

Came (1978) described a design procedure and the subsequent testing of a 6.5 pres-
sure ratio centrifugal compressor incorporating 30deg backswept vanes, giving an isen-
tropic total-to-total efficiency for the impeller of over 85%. The overall total-to-total
efficiency for the stage was 76.5% and, with a stage pressure ratio of 6.8 a surge margin
of 15% was realised. The use of backswept vanes and the avoidance of high vane
loading were factors believed to have given a significant improvement in performance
compared to an earlier unswept vane design.

Palmer and Waterman (1995) gave some details of an advanced two-stage centrifu-
gal compressor used in a helicopter engine with a pressure ratio of 14, a mass flow rate
of 3.3kg/s and an overall total-to-total efficiency of 80%. Both stages employed back-
swept vanes (approximately 47deg) with a low aerodynamic loading achieved by
having a relatively large number of vanes (19 full vanes and 19 splitter vanes).

An interesting and novel compressor is the “axi-fuge”, a mixed flow design with a
high efficiency potential, described by Wiggins (1986) and giving on test a pressure
ratio of 6.5 at an isentropic efficiency (undefined) of 84%. Essentially, the machine has
a typical short centrifugal compressor annulus but actually contains six stages of rotor
and stator blades similar to those of an axial compressor. The axi-fuge is claimed to
have the efficiency and pressure ratio of an axial compressor of many stages but retains
the compactness and structural simplicity of a centrifugal compressor.

Some definitions
Most of the pressure-increasing turbomachines in use are of the radial-flow type and

vary from fans that produce pressure rises equivalent to a few millimetres of water to
pumps producing heads of many hundreds of metres of water. The term pump is used
when referring to machines that increase the pressure of a flowing liquid. The term fan
is used for machines imparting only a small increase in pressure to a flowing gas. In
this case the pressure rise is usually so small that the gas can be considered as being
incompressible. A compressor gives a substantial rise in pressure to a flowing gas. For
purposes of definition, the boundary between fans and compressors is often taken as
that where the density ratio across the machine is 1.05. Sometimes, but more rarely
nowadays, the term blower is used instead of fan.

A centrifugal compressor or pump consists essentially of a rotating impeller followed
by a diffuser. Figure 7.1 shows diagrammatically the various elements of a centrifugal
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compressor. Fluid is drawn in through the inlet casing into the eye of the impeller. The
function of the impeller is to increase the energy level of the fluid by whirling it out-
wards, thereby increasing the angular momentum of the fluid. Both the static pressure
and the velocity are increased within the impeller. The purpose of the diffuser is to
convert the kinetic energy of the fluid leaving the impeller into pressure energy. This
process can be accomplished by free diffusion in the annular space surrounding the
impeller or, as indicated in Figure 7.1, by incorporating a row of fixed diffuser vanes
which allows the diffuser to be made very much smaller. Outside the diffuser is a scroll
or volute whose function is to collect the flow from the diffuser and deliver it to the
outlet pipe. Often, in low-speed compressors and pump applications where simplicity
and low cost count for more than efficiency, the volute follows immediately after the
impeller.

The hub is the curved surface of revolution of the impeller a–b; the shroud is the
curved surface c–d forming the outer boundary to the flow of fluid. Impellers may be
enclosed by having the shroud attached to the vane ends (called shrouded impellers)
or unenclosed with a small clearance gap between the vane ends and the stationary
wall. Whether or not the impeller is enclosed the surface, c–d is generally called the

FIG. 7.1. Centrifugal compressor stage and velocity diagrams at impeller entry 
and exit.
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shroud. Shrouding an impeller has the merit of eliminating tip leakage losses but at the
same time increases friction losses. NACA tests have demonstrated that shrouding of
a single impeller appears to be detrimental at high speeds and beneficial at low speeds.
At entry to the impeller the relative flow has a velocity w1 at angle b1 to the axis of
rotation. This relative flow is turned into the axial direction by the inducer section or
rotating guide vanes as they are sometimes called. The inducer starts at the eye and
usually finishes in the region where the flow is beginning to turn into the radial direc-
tion. Some compressors of advanced design extend the inducer well into the radial flow
region apparently to reduce the amount of relative diffusion.

To simplify manufacture and reduce cost, many fans and pumps are confined to 
a two-dimensional radial section as shown in Figure 7.2. With this arrangement 
some loss in efficiency can be expected. For the purpose of greatest utility, relations
obtained in this chapter are generally in terms of the three-dimensional compressor 
configuration.

Theoretical analysis of a centrifugal compressor
The flow through a compressor stage is a highly complicated, three-dimensional

motion and a full analysis presents many problems of the highest order of difficulty.
However, we can obtain approximate solutions quite readily by simplifying the flow
model. We adopt the so-called one-dimensional approach which assumes that the fluid
conditions are uniform over certain flow cross-sections. These cross-sections are con-
veniently taken immediately before and after the impeller as well as at inlet and exit
of the entire machine. Where inlet vanes are used to give prerotation to the fluid enter-
ing the impeller, the one-dimensional treatment is no longer valid and an extension of
the analysis is then required (see Chapter 6).

FIG. 7.2. Radial-flow pump and velocity triangles.
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Inlet casing
The fluid is accelerated from velocity c0 to velocity c1 and the static pressure falls

from p0 to p1 as indicated in Figure 7.3. Since the stagnation enthalpy is constant in
steady, adiabatic flow without shaft work then h00 = h01 or

Some efficiency definitions appropriate to this process are stated in Chapter 2.

Impeller
The general three-dimensional motion has components of velocity cr, cq and cx

respectively in the radial, tangential and axial directions and c2 = cr
2 + cq

2 + cx
2.

Thus, from eqn. (2.12e), the rothalpy is

Adding and subtracting this becomes

(7.1)

From the velocity triangle, Figure 7.1, U - cq = wq and together with w2 = cr
2 + wq

2 +
cx

2, eqn. (7.1) becomes

1
2

2U

FIG. 7.3. Mollier diagram for the complete centrifugal compressor stage.



or

since

Since I1 = I2 across the impeller, then

(7.2)

The above expression provides the reason why the static enthalpy rise in a centrifu-
gal compressor is so large compared with a single-stage axial compressor. On the right-
hand side of eqn. (7.2), the second term, , is the contribution from the
diffusion of relative velocity and was obtained for axial compressors also. The first
term, , is the contribution due to the centrifugal action which is zero if the
streamlines remain at the same radii before and after the impeller.

The relation between state points 1 and 2 in Figure 7.3 can be easily traced with the
aid of eqn. (7.2).

Referring to Figure 7.1, and in particular the inlet velocity diagram, the absolute flow
has no whirl component or angular momentum and cq1 = 0. In centrifugal compressors
and pumps this is the normal situation where the flow is free to enter axially. For such
a flow the specific work done on the fluid, from eqn. (2.12c), is written as

(7.3a)

in the case of compressors, and

(7.3b)

in the case of pumps, where Hi (the “ideal” head) is the total head rise across the pump
excluding all internal losses. In high pressure ratio compressors it may be necessary to
impart prerotation to the flow entering the impeller as a means of reducing a high rel-
ative inlet velocity. The effects of high relative velocity at the impeller inlet are expe-
rienced as Mach number effects in compressors and cavitation effects in pumps. The
usual method of establishing prerotation requires the installation of a row of inlet guide
vanes upstream of the impeller, the location depending upon the type of inlet. Unless
contrary statements are made it will be assumed for the remainder of this chapter that
there is no prerotation (i.e. cq1 = 0).

Conservation of rothalpy
A cornerstone of the analysis of steady, relative flows in rotating systems has, for

many years, been the immutable nature of the fluid mechanical property rothalpy. The
conditions under which the rothalpy of a fluid is conserved in the flow through impellers
and rotors have been closely scrutinised by several researchers. Lyman (1993) reviewed
the equations and physics governing the constancy of rothalpy in turbomachine fluid
flows and found that an increase in rothalpy was possible for steady, viscous flow

1
2 2

2
1
2U U-( )

1
2 2

2
1
2w w-( )
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without heat transfer or body forces. He proved mathematically that the rothalpy
increase was generated mainly by the fluid friction acting on the stationary shroud of
the compressor considered. From his analysis, and put in the simplest terms, he deduced
that

(7.4)

where Wf = m
.

(I2 - I1) = Ún ·t ·WdA is the power loss due to fluid friction on the sta-
tionary shroud, n is a unit normal vector, t is a viscous stress tensor, W is the relative
velocity vector and dA is an element of the surface area. Lyman did not give any numer-
ical values in support of his analysis.

In the discussion of Lyman’s paper, Moore et al. disclosed that earlier viscous flow
calculations of the flow in centrifugal flow compressors (see Moore et al. 1984) of the
power loss in a centrifugal compressor had shown a rothalpy production amounting to
1.2% of the total work input. This was due to the shear work done at the impeller shroud
and it was acknowledged to be of the same order of magnitude as the work done over-
coming disc friction on the back face of the impeller. Often disc friction is ignored in
preliminary design calculations.

A later, careful, order-of-magnitude investigation by Bosman and Jadayel (1996)
showed that the change in rothalpy through a centrifugal compressor impeller would
be negligible under typical operating conditions. They also believed that it was not pos-
sible to accurately calculate the change in rothalpy because the effects due to inexact
turbulence modelling and truncation error in computation would far exceed those due
to non-conservation of rothalpy.

Diffuser
The fluid is decelerated adiabatically from velocity c2 to a velocity c3, the static pres-

sure rising from p2 to p3 as shown in Figure 7.3. As the volute and outlet diffuser involve
some further deceleration it is convenient to group the whole diffusion together as the
change of state from point 2 to point 3. As the stagnation enthalpy in steady adiabatic
flow without shaft work is constant, h02 = h03 or . The process 2 to
3 in Figure 7.3 is drawn as irreversible, there being a loss in stagnation pressure p02 -
p03 during the process.

Inlet velocity limitations
The inlet eye is an important critical region in centrifugal pumps and compressors

requiring careful consideration at the design stage. If the relative velocity of the inlet
flow is too large in pumps, cavitation may result with consequent blade erosion or even
reduced performance. In compressors large relative velocities can cause an increase in
the impeller total pressure losses. In high-speed centrifugal compressors Mach number
effects may become important with high relative velocities in the inlet. By suitable
sizing of the eye the maximum relative velocity, or some related parameter, can be min-
imised to give the optimum inlet flow conditions. As an illustration the following analy-
sis shows a simple optimisation procedure for a low-speed compressor based upon
incompressible flow theory.

h c h c2
1
2 2

2
3

1
2 3

2+ = +
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For the inlet geometry shown in Figure 7.1, the absolute eye velocity is assumed to
be uniform and axial. The inlet relative velocity is w1 = (c2

x1 + U2)1/2 which is clearly a
maximum at the inducer tip radius rs1. The volume flow rate is

(7.5)

It is worth noticing that with both Q and rh1 fixed

(i) if rs1 is made large then, from continuity, the axial velocity is low but the blade
speed is high,

(ii) if rs1 is made small the blade speed is small but the axial velocity is high.

Both extremes produce large relative velocities and there must exist some optimum
radius rs1 for which the relative velocity is a minimum.

For maximum volume flow, differentiate eqn. (7.5) with respect to rs1 (keeping ws1

constant) and equate to zero,

After simplifying,

where k = 1 - (rh1/rs1)2 and Us1 = Wrs1. Hence, the optimum inlet velocity coefficient is

(7.6)

Equation (7.6) specifies the optimum conditions for the inlet velocity triangles in terms
of the hub–tip radius ratio. For typical values of this ratio (i.e. 0.3 � rh1/rs1 � 0.6) the
optimum relative flow angle at the inducer tip bs1 lies between 56deg and 60deg.

Optimum design of a pump inlet
As discussed in Chapter 1, cavitation commences in a flowing liquid when the

decreasing local static pressure becomes approximately equal to the vapour pressure,
p�. To be more precise, it is necessary to assume that gas cavitation is negligible and
that sufficient nuclei exist in the liquid to initiate vapour cavitation.

The pump considered in the following analysis is again assumed to have the flow
geometry shown in Figure 7.1. Immediately upstream of the impeller blades the static
pressure is where p01 is the stagnation pressure and cx1 is the axial
velocity. In the vicinity of the impeller blades leading edges on the suction surfaces
there is normally a rapid velocity increase which produces a further decrease in pres-
sure. At cavitation inception the dynamic action of the blades causes the local pressure
to reduce such that p = p� = p1 - sb(

1–
2 rw1

2). The parameter sb which is the blade cavi-
tation coefficient corresponding to the cavitation inception point, depends upon the
blade shape and the flow incidence angle. For conventional pumps (see Pearsall 1972)
operating normally this coefficient lies in the range 0.2 � sb � 0.4. Thus, at cavitation
inception

p p cx1 01
1
2 1

2= - r
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where Hs is the net positive suction head introduced earlier and it is implied that this
is measured at the shroud radius r = rs1.

To obtain the optimum inlet design conditions consider the suction specific speed
defined as Wss = WQ1/2/(gHs)3/4, where W = Us1/rs1 and Q = cx1A1 = pkr2

s1cx1. Thus,

(7.7)

where f = cx1/Us1. To obtain the condition of maximum Wss, eqn. (7.7) is differentiated
with respect to f and the result set equal to zero. From this procedure the optimum con-
ditions are found:

(7.8a)

(7.8b)

(7.8c)

EXAMPLE 7.1. The inlet of a centrifugal pump of the type shown in Figure 7.1 is to
be designed for optimum conditions when the flow rate of water is 25dm3/s and the
impeller rotational speed is 1450 rev/min. The maximum suction specific speed Wss =
3.0 (rad) and the inlet eye radius ratio is to be 0.3. Determine

(i) the blade cavitation coefficient,
(ii) the shroud diameter at the eye,

(iii) the eye axial velocity, and
(iv) the NPSH.

Solution. (i) From eqn. (7.8c),

with k = 1 - (rh1/rs1)2 = 1 - 0.32 = 0.91. Solving iteratively (e.g. using the Newton–
Raphson approximation), sb = 0.3030.

(ii) As Q = pkr2
s1cx1 and cx1 = fWrs1 then r3

s1 = Q/(pkWf) and W = 1450p/30 =
151.84 rad/s.

From eqn. (7.8a), f = {0.303/(2 ¥ 1.303)}0.5 = 0.3410,

s sb b ssk2 2 41 3 42 0 1196+( ) = ( ) =. .W
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The required diameter of the eye is 110.6mm.
(iii) cx1 = fWrs1 = 0.341 ¥ 151.84 ¥ 0.05528 = 2.862m/s.
(iv) From eqn. (7.8b),

Optimum design of a centrifugal compressor inlet
To obtain high efficiencies from high pressure ratio compressors it is necessary to

limit the relative Mach number at the eye.
The flow area at the eye can be written as

Hence (7.9)

with

With uniform axial velocity the continuity equation is m
. = r1A1cx1.

Noting from the inlet velocity diagram (Figure 7.1) that cx1 = ws1 cos bs1 and Us1 =
ws1 sin bs1, then, using eqn. (7.9),

(7.10)

For a perfect gas it is most convenient to express the static density r1 in terms of the
stagnation temperature T01 and stagnation pressure p01 because these parameters are
usually constant at entry to the compressor. Now,

With

then

where the Mach number, M = c/(gRT)1/2 = c/a, a0 and a being the stagnation and local
(static) speeds of sound. For isentropic flow,

U rs s1 1= W

A kUs1 1
2 2= p W

A r k k r rs h s1 1
2

1 1
2

1= = - ( )p , . where 
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Thus,

where

The absolute Mach number M1 and the relative Mach number Mr1 are defined as

Using these relations together with eqn. (7.10)

Since and a01 = (gRT01)1/2 the above equation is rearranged
to give

(7.11)

This equation is extremely useful and can be used in a number of different ways. For
a particular gas and known inlet conditions one can specify values of g, R, p01 and T01

and obtain m
. W2/k as a function of Mr1 and bs1. By specifying a particular value of Mr1

as a limit, the optimum value of bs1 for maximum mass flow can be found. A graphi-
cal procedure is the simplest method of optimising bs1 as illustrated below.

Taking as an example air, with g = 1.4, eqn. (7.11) becomes

(7.11a)

The right-hand side of eqn. (7.11a) is plotted in Figure 7.4 as a function of bs1 for
Mr1 = 0.8 and 0.9. These curves are a maximum at bs1 = 60deg (approximately).

Shepherd (1956) considered a more general approach to the design of the compres-
sor inlet which included the effect of a free-vortex prewhirl or prerotation. The effect
of prewhirl on the mass flow function is easily determined as follows. From the veloc-
ity triangles in Figure 7.5,

Also,

a a M01 1
1
2 1

2 1 2
1 1= + -( )[ ]g
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and

(7.11b)

Thus, using the relations developed earlier for T01/T1, p01/p1 and r01/r1, we obtain

(7.12)

Substituting g = 1.4 for air into eqn. (7.12) we get

(7.12a)

The right-hand side of eqn. (7.12a) is plotted in Figure 7.4 with a1s = 30deg for Mr1 =
0.8 and 0.9, showing that the peak values of m

. W2/k are significantly increased and occur
at much lower values of b1.

EXAMPLE 7.2. The inlet of a centrifugal compressor is fitted with free-vortex guide
vanes to provide a positive prewhirl of 30deg at the shroud. The inlet hub–shroud radius
ratio is 0.4 and a requirement of the design is that the relative Mach number does not
exceed 0.9. The air mass flow is 1kg/s, the stagnation pressure and temperature are
101.3kPa and 288K. For air take R = 287J/(kgK) and g = 1.4.

Assuming optimum conditions at the shroud, determine

(i) the rotational speed of the impeller;
(ii) the inlet static density downstream of the guide vanes at the shroud and the axial

velocity;
(iii) the inducer tip diameter and velocity.

Solution. (i) From Figure 7.4, the peak value of f(Mr1) = 0.4307 at a relative flow
angle b1 = 49.4deg. The constants needed are , r01

= p01/(RT01) = 1.2255kg/m3 and k = 1 - 0.42 = 0.84. Thus, from eqn. (7.12a), 
W2 = pfkr01a3

01 = 5.4843 ¥ 107. Hence,

(ii)

The axial velocity is determined from eqn. (7.11b):

a RT01 01 340 2= ÷( ) =g . m s
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(iii)

Use of prewhirl at entry to impeller

Introducing positive prewhirl (i.e. in the direction of impeller rotation) can give a
significant reduction of the inlet Mach number Mr1 but, as seen from eqn. (2.12c), it
reduces the specific work done on the gas. As will be seen later, it is necessary to
increase the blade tip speed to maintain the same level of impeller pressure ratio as was
obtained without prewhirl.

Prewhirl is obtained by fitting guide vanes upstream of the impeller. One arrange-
ment for doing this is shown in Figure 7.5a. The velocity triangles, Figure 7.5b and c,
show how the guide vanes reduce the relative inlet velocity. Guide vanes are designed
to produce either a free-vortex or a forced-vortex velocity distribution. In Chapter 6 it
was shown that for a free-vortex flow the axial velocity cx is constant (in the ideal flow)
with the tangential velocity cq varying inversely with the radius. It was shown by
Wallace et al. (1975) that the use of free-vortex prewhirl vanes leads to a significant
increase in incidence angle at low inducer radius ratios. The use of some forced-vortex
velocity distribution does alleviate this problem. Some of the effects resulting from the
adoption of various forms of forced-vortex of the type

have been reviewed by Whitfield and Baines (1990). Figure 7.6a shows, for a particu-
lar case in which a1s = 30deg, b1s = 60deg and b ¢ 1s = 60deg, the effect of prewhirl on
the variation of the incidence angle, i = b1 - b ¢ 1 with radius ratio, r/r1s, for various
whirl distributions. Figure 7.6b shows the corresponding variations of the absolute flow
angle, a1. It is apparent that a high degree of prewhirl vane twist is required for either
a free-vortex design or for the quadratic (n = 2) design. The advantage of the quadratic
design is the low variation of incidence with radius, whereas it is evident that the free-
vortex design produces a wide variation of incidence. Wallace et al. (1975) adopted the
simple untwisted blade shape (n = 0) which proved to be a reasonable compromise.
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Slip factor
Introduction

Even under ideal (frictionless) conditions the relative flow leaving the impeller of a
compressor or pump will receive less than perfect guidance from the vanes and the flow
is said to slip. If the impeller could be imagined as being made with an infinite number
of infinitesimally thin vanes, then an ideal flow would be perfectly guided by the vanes
and would leave the impeller at the vane angle. Figure 7.7 compares the relative flow
angle, b2, obtained with a finite number of vanes, with the vane angle, b ¢2. A slip factor
may be defined as
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(7.13a)

where cq2 is the tangential component of the absolute velocity and related to the rela-
tive flow angle b2. The hypothetical tangential velocity component c¢q2 is related to the
vane angle b ¢2. The slip velocity is given by cqs = c¢q2 - cq2 so that the slip factor can 
be written as

(7.13b)

The slip factor is a vital piece of information needed by pump and compressor design-
ers (also by designers of radial turbines) as its accurate estimation enables the correct
value of the energy transfer between impeller and fluid to be made. Various attempts
to determine values of slip factor have been made and numerous research papers con-
cerned solely with this topic have been published. Wiesner (1967) has given an exten-
sive review of the various expressions used for determining slip factors. Most of the
expressions derived relate to radially vaned impellers (b ¢2 = 0) or to mixed flow designs,
but some are given for backward swept vane (bsv) designs. All of these expressions
are derived from inviscid flow theory even though the real flow is far from ideal.
However, despite this lack of realism in the flow modelling, the fact remains that good
results are still obtained with the various theories.

The relative eddy concept

Suppose that an irrotational and frictionless fluid flow is possible which passes
through an impeller. If the absolute flow enters the impeller without spin, then at outlet
the spin of the absolute flow must still be zero. The impeller itself has an angular veloc-
ity W so that, relative to the impeller, the fluid has an angular velocity of -W; this is
termed the relative eddy. A simple explanation for the slip effect in an impeller is
obtained from the idea of a relative eddy.

At outlet from the impeller the relative flow can be regarded as a through-flow on
which is superimposed a relative eddy. The net effect of these two motions is that the
average relative flow emerging from the impeller passages is at an angle to the vanes
and in a direction opposite to the blade motion, as indicated in Figure 7.8. This is the
basis of the various theories of slip.

Slip factor correlations

One of the earliest and simplest expressions for the slip factor was obtained by
Stodola (1945). Referring to Figure 7.9 the slip velocity, cqs = c¢q2 - cq2, is considered
to be the product of the relative eddy and the radius d/2 of a circle which can be
inscribed within the channel. Thus cqs = Wd/2. If the number of vanes is denoted by Z
then an approximate expression, d � (2pr2/Z) cos b¢2 can be written if Z is not small.
Since W = U2/r2 then

(7.13c)
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Now as c ¢q2 = U2 - cr2 tan b¢2 the Stodola slip factor becomes

(7.14)

or

(7.15)

where f2 = cr2/U2.
A number of more refined (mathematically exact) solutions have been evolved of

which the most well known are those of Busemann, discussed at some length by

FIG. 7.8. (a) Relative eddy without any through-flow. (b) Relative flow at impeller exit
(through-flow added to relative eddy).

FIG. 7.9. Flow model for Stodola slip factor.
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Wislicenus (1947) and Stanitz (1952) mentioned earlier. The volume of mathematical
work required to describe these theories is too extensive to justify inclusion here and
only a brief outline of the results is presented.

Busemann’s theory applies to the special case of two-dimensional vanes curved as
logarithmic spirals as shown in Figure 7.10. Considering the geometry of the vane
element shown it should be an easy task for the student to prove that

(7.17a)

that the ratio of vane length to equivalent blade pitch is

(7.17b)

and that the equivalent pitch is

The equi-angular or logarithmic spiral is the simplest form of radial vane system and
has been frequently used for pump impellers in the past. The Busemann slip factor can
be written as

(7.16)

where both A and B are functions of r2/r1, b¢2 and Z. For typical pump and compressor
impellers the dependence of A and B on r2/r1 is negligible when the equivalent l/s
exceeds unity. From eqn. (7.17b) the requirement for l/s � 1, is that the radius ratio
must be sufficiently large, i.e.

(7.17c)

FIG. 7.10. Logarithmic spiral vane. Vane angle b¢ is constant for all radii.
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This criterion is often applied to other than logarithmic spiral vanes and then b ¢2 is used
instead of b¢. Radius ratios of typical centrifugal pump impeller vanes normally exceed
the above limit. For instance, blade outlet angles of impellers are usually in the range
50 � b ¢2 � 70deg with between 5 and 12 vanes. Taking representative values of b ¢2 =
60deg and Z = 8 the right-hand side of eqn. (7.17c) is equal to 1.48 which is not par-
ticularly large for a pump.

So long as these criteria are obeyed the value of B is constant and practically equal
to unity for all conditions. Similarly, the value of A is independent of the radius ratio
r2/r1 and depends on b¢2 and Z only. Values of A given by Csanady (1960) are shown in
Figure 7.11 and may also be interpreted as the value of sB for zero through flow (f2 =
0).

The exact solution of Busemann makes it possible to check the validity of approxi-
mate methods of calculation such as the Stodola expression. By putting f2 = 0 in eqns.
(7.15) and (7.16) a comparison of the Stodola and Busemann slip factors at the zero
through-flow condition can be made. The Stodola value of slip comes close to the exact
correction if the vane angle is within the range 50 � b ¢2 � 70deg and the number of
vanes exceeds six.

Stanitz (1952) applied relaxation methods of calculation to solve the potential flow
field between the blades (blade-to-blade solution) of eight impellers with blade tip
angles b ¢2 varying between 0 and 45deg. His main conclusions were that the computed
slip velocity cqs was independent of vane angle b ¢2 and depended only on blade spacing

FIG. 7.11. Head correction factors for centrifugal impellers (adapted from 
Csanady 1960).



(number of blades). He also found that compressibility effects did not affect the slip
factor. Stanitz’s expression for slip velocity is

(7.18)

and the corresponding slip factor ss using eqn. (7.14), is

(7.18a)

For radial vaned impellers this becomes ss = 1 - 0.63p/Z but is often written for 
convenience and initial approximate calculations as ss = 1 - 2/Z.

Ferguson (1963) has usefully compiled values of slip factor found from several the-
ories for a number of blade angles and blade numbers and compared them with known
experimental values. He found that for pumps, with b ¢2 between 60deg and 70deg, the
Busemann or Stodola slip factors gave fairly good agreement with experimental results.
For radial vaned impellers on the other hand, the Stanitz expression, eqn. (7.18a) agreed
very well with experimental observations. For intermediate values of b ¢2 the Busemann
slip factor gave the most consistent agreement with experiment.

Wiesner (1967) reviewed all the available methods for calculating values of slip
factor and compared them with values obtained from tests. He concluded from all the
material presented that Busemann’s procedure was still the most generally applicable
predictor for determining the basic slip factor of centripetal impellers. Wiesner obtained
the following simple empirical expression for the slip velocity:

(7.19a)

and the corresponding slip factor

(7.19b)

which, according to Wiesner, fitted the Busemann results “extremely well over the
whole range of practical blade angles and number of blades”.

The above equation is applicable to a limiting mean radius ratio for the impeller
given by the empirical expression:

(7.19c)

For values of r1/r2 > e the slip factor is determined from the empirical expression

(7.19d)

Head increase of a centrifugal pump
The actual delivered head H, measured as the head difference between the inlet and

outlet flanges of the pump and sometimes called the manometric head, is less than the
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ideal head Hi defined by eqn. (7.3b) by the amount of the internal losses. The hydraulic
efficiency of the pump is defined as

(7.20)

From the velocity triangles of Figure 7.2

Therefore (7.20a)

where f 2 = cr2/U2 and b 2 is the actual averaged relative flow angle at impeller outlet.
With the definition of slip factor, s = cq2/c¢q2, H can, more usefully, be directly related

to the impeller vane outlet angle as

(7.20b)

In general, centrifugal pump impellers have between five and twelve vanes inclined
backwards to the direction of rotation, as suggested in Figure 7.2, with a vane tip angle
b ¢2 of between 50 and 70deg. A knowledge of blade number, b ¢2 and f2 (usually small
and of the order 0.1) generally enables s to be found using the Busemann formula. The
effect of slip, it should be noted, causes the relative flow angle b 2 to become larger
than the vane tip angle b ¢2.

EXAMPLE 7.3. A centrifugal pump delivers 0.1m3/s of water at a rotational speed of
1200 rev/min. The impeller has seven vanes which lean backwards to the direction of
rotation such that the vane tip angle b ¢2 is 50deg. The impeller has an external diame-
ter of 0.4m, an internal diameter of 0.2m and an axial width of 31.7mm. Assuming
that the diffuser efficiency is 51.5%, that the impeller head losses are 10% of the ideal
head rise and that the diffuser exit is 0.15m in diameter, estimate the slip factor, the
manometric head and the hydraulic efficiency.

Solution. Equation (7.16) is used for estimating the slip factor. Since exp(2pcosb ¢2/Z)
= exp(2p ¥ 0.643/7) = 1.78 is less than r2/r1 = 2, then B = 1 and A � 0.77, obtained by
replotting the values of A given in Figure 7.11 for b ¢2 = 50deg and interpolating.

Hence the Busemann slip factor is

Hydraulic losses occur in the impeller and in the diffuser. The kinetic energy leaving
the diffuser is not normally recovered and must contribute to the total loss, HL. From
inspection of eqn. (2.45b), the loss in head in the diffuser is (1 - hD)(c2

2 - c2
3/(2g). The

head loss in the impeller is 0.1 ¥ U2cq2/g and the exit head loss is c2
3 /(2g). Summing the

losses,
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Determining the velocities and heads needed,

The manometric head is

and the hydraulic efficiency

Performance of centrifugal compressors
Determining the pressure ratio

Consider a centrifugal compressor having zero inlet swirl, compressing a perfect gas.
With the usual notation the energy transfer is

The overall or total-to-total efficiency hc is

(7.21)

Now the overall pressure ratio is

(7.22)

Substituting eqn. (7.21) into eqn. (7.22) and noting that CpT01 = gRT01/(g - 1) =
a2

01/(g - 1), the pressure ratio becomes

(7.23)

From the velocity triangle at impeller outlet (Figure 7.1)
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and, therefore,

(7.24a)

This formulation is useful if the flow angles can be specified. Alternatively, and more
usefully, as cq2 = sc ¢q2 = s(U2 - cr2 tan b ¢2), then

(7.24b)

where Mu = U2/a01, is now defined as a blade Mach number.
It is of interest to calculate the variation of the pressure ratio of a radially vaned (b ¢2

= 0) centrifugal air compressor to show the influence of blade speed and efficiency on
the performance. With g = 1.4 and s = 0.9 (i.e. using the Stanitz slip factor, s = 1 -
1.98/Z and assuming Z = 20, the results evaluated are shown in Figure 7.12. It is clear
that both the efficiency and the blade speed have a strong effect on the pressure ratio.
In the 1970s the limit on blade speed due to centrifugal stress was about 500m/s and

FIG. 7.12. Variation of pressure ratio with blade speed for a radial-bladed compressor
(b¢2 = 0) at various values of efficiency.



efficiencies seldom exceeded 80% giving, with a slip factor of 0.9, radial vanes and an
inlet temperature of 288K, a pressure ratio just above 5. In recent years significant
improvements in the performance of centrifugal compressors have been obtained,
brought about by the development of computer-aided design and analysis techniques.
According to Whitfield and Baines (1990) the techniques employed consist of “a judi-
cious mix of empirical correlations and detailed modelling of the flow physics”. It is
possible to use these computer packages and arrive at a design solution without any
real appreciation of the flow phenomena involved. In all compressors the basic flow
process is one of diffusion; boundary layers are prone to separate and the flow is
extremely complex. With separated wakes in the flow, unsteady flow downstream of
the impeller can occur. It must be stressed that a broad understanding of the flow
processes within a centrifugal compressor is still a vital requirement for the more
advanced student and for the further progress of new design methods.

A characteristic of all high performance compressors is that as the design pressure
ratio has increased, so the range of mass flow between surge and choking has dimin-
ished. In the case of the centrifugal compressor, choking can occur when the Mach
number entering the diffuser passages is just in excess of unity. This is a severe problem
which is aggravated by shock-induced separation of the boundary layers on the vanes
which worsens the problem of flow blockage.

Effect of backswept vanes

Came (1978) and Whitfield and Baines (1990) have commented upon the trend
towards the use of higher pressure ratios from single-stage compressors leading to more
highly stressed impellers. The increasing use of backswept vanes and higher blade tip
speeds result in higher direct stress in the impeller and bending stress in the non-radial
vanes. However, new methods of computing the stresses in impellers are being imple-
mented (Calvert and Swinhoe 1977), capable of determining both the direct and the
bending stresses caused by impeller rotation.

The effect of using backswept impeller vanes on the pressure ratio is shown in Figure
7.13 for a range of blade Mach numbers. It is evident that the use of backsweep of the
vanes at a given blade speed causes a loss in pressure ratio. In order to maintain a given
pressure ratio it would be necessary to increase the design speed which, it has been
noted already, increases the blade stresses.

With high blade tip speeds the absolute flow leaving the impeller may have a Mach
number well in excess of unity. As this Mach number can be related to the Mach number
at entry to the diffuser vanes, it is of some advantage to be able to calculate the former.

Assuming a perfect gas the Mach number at impeller exit M2 can be written as

(7.25)

since a2
01 = g RT01 and a2

2 = g RT2.
Referring to the outlet velocity triangle, Figure 7.7,

c c c c cr r2
2

2
2

2
2

2
2

2
2= + = + ¢( )q qs ,
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where

(7.26)

From eqn. (7.2), assuming that rothalpy remains essentially constant,

hence,

(7.27)

since h01 = CpT01 = a2
01/(g - 1).

From the exit velocity triangle, Figure 7.7,
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FIG. 7.13. Variation of pressure ratio vs blade Mach number of a centrifugal
compressor for selected backsweep angles (g = 1.4, hc = 0.8, s = 0.9, f2 = 0.375).
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(7.28)

Substituting eqns. (7.26), (7.27) and (7.28) into eqn. (7.25), we get

(7.29)

Although eqn. (7.29) at first sight looks complicated it reduces into an easily managed
form when constant values are inserted. Assuming the same values used previously, i.e.
g = 1.4, s = 0.9, f2 = 0.375 and b ¢2 = 0, 15, 30 and 45deg, the solution for M2 can be
written as

(7.29a)

where the constants A and B are as shown in Table 7.1, and, from which the curves of
M2 against Mu in Figure 7.14 have been calculated.

According to Whitfield and Baines (1990) the two most important aerodynamic
parameters at impeller exit are the magnitude and direction of the absolute Mach
number M2. If M2 has too high a value, the process of efficient flow deceleration within
the diffuser itself is made more difficult leading to high friction losses as well as the
increased possibility of shock losses. If the flow angle a2 is large the flow path in the
vaneless diffuser will be excessively long resulting in high friction losses and possible
stall and flow instability. Several researchers (e.g. Rodgers and Sapiro 1972) have
shown that the optimum flow angle is in the range 60° < a2 < 70°.

Backswept vanes give a reduction of the impeller discharge Mach number, M2, at
any given tip speed. A designer making the change from radial vanes to backswept
vanes will incur a reduction in the design pressure ratio if the vane tip speed remains
the same. To recover the original pressure ratio the designer is forced to increase 
the blade tip speed which increases the discharge Mach number. Fortunately, it turns
out that this increase in M2 is rather less than the reduction obtained by the use of 
backsweep.

TABLE 7.1. Constants used to evaluate M2

Constant b¢2 (deg)

0 15 30 45

A 0.975 0.8922 0.7986 0.676
B 0.1669 0.1646 0.1545 0.1336
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Illustrative exercise. Consider a centrifugal compressor design which assumes the
previous design data (Figures 7.13 and 7.14), together with b ¢2 = 0° and a blade speed
such that Mu = 1.6. From Figure 7.13 the pressure ratio at this point is 6.9 and, from
Figure 7.14, the value of M2 = 1.3. Choosing an impeller with a backsweep angle, b ¢2
= 30°, the pressure ratio is 5.0 from Figure 7.13 at the same value of Mu. So, to restore
the original pressure ratio of 6.9 the blade Mach number must be increased to Mu =
1.81. At this new condition a value of M2 = 1.178 is obtained from Figure 7.14, a sig-
nificant reduction from the original value.

The absolute flow angle can now be found from the exit velocity triangle, Figure 7.7:

With s = 0.9, f2 = 0.375 then, for b ¢2 = 0°, the value of a2 = 67.38°. Similarly, with 
b ¢2 = 30°, the value of a2 = 62°, i.e. both values of a2 are within the prescribed range.

Kinetic energy leaving the impeller

According to Van den Braembussche (1985) “the kinetic energy available at the dif-
fuser inlet easily amounts to more than 50% of the total energy added by the impeller”.
From the foregoing analysis it is not so difficult to determine whether or not this state-
ment is true. If the magnitude of the kinetic energy is so large then the importance of
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FIG. 7.14. Variation of impeller exit Mach number vs blade Mach number of a
centrifugal compressor for selected backsweep angles (g = 1.4, s = 0.9, f2 = 0.375).



efficiently converting this energy into pressure energy can be appreciated. The conver-
sion of the kinetic energy to pressure energy is considered in the following section on
diffusers.

The fraction of the kinetic energy at impeller exit to the specific work input is

(7.30)

where

(7.31)

Define the total-to-total efficiency of the impeller as

where pr is the total-to-total pressure ratio across the impeller, then

(7.32)

(7.33)

Substituting eqns. (7.30), (7.31) and (7.32) into eqn. (7.30) we get

(7.34)

Exercise. Determine rE assuming that b ¢2 = 0, s = 0.9, hI = 0.8, pr = 4 and g = 1.4.
N.B. It is very convenient to assume that Figures 7.13 and 7.14 can be used to derive

the values of the Mach numbers Mu and M2. From Figure 7.13 we get Mu = 1.3 and
from Figure 7.14, M2 = 1.117. Substituting values into eqn. (7.34),

Calculations of rE at other pressure ratios and sweepback angles show that its value
remains about 0.52 provided that s and h1 do not change.

EXAMPLE 7.4. Air at a stagnation temperature of 22°C enters the impeller of a cen-
trifugal compressor in the axial direction. The rotor, which has 17 radial vanes, rotates
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at 15,000 rev/min. The stagnation pressure ratio between diffuser outlet and impeller
inlet is 4.2 and the overall efficiency (total-to-total) is 83%. Determine the impeller tip
radius and power required to drive the compressor when the mass flow rate is 2kg/s
and the mechanical efficiency is 97%. Given that the air density at impeller outlet is 
2kg/m3 and the axial width at entrance to the diffuser is 11mm, determine the absolute
Mach number at that point. Assume that the slip factor ss = 1 - 2/Z, where Z is the
number of vanes.

(For air take g = 1.4 and R = 0.287kJ/(kg K).)

Solution. From eqn. (7.3a) the specific work is

since cq1 = 0. Combining eqns. (7.20) and (7.21) with the above and rearranging gives

where r = p03/p01 = 4.2; Cp = gR/(g - 1) = 1.005kJ/kg K,ss = 1 - 2/17 = 0.8824.

Therefore

Therefore U2 = 452m/s.
The rotational speed is

Thus, the impeller tip radius is

The actual shaft power is obtained from

Although the absolute Mach number at the impeller tip can be obtained almost directly
from eqn. (7.28) it may be instructive to find it from

where

Therefore

Since
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Therefore

Hence,

The diffuser system
Centrifugal compressors and pumps are, in general, fitted with either a vaneless or

a vaned diffuser to transform the kinetic energy at impeller outlet into static pressure.

Vaneless diffusers

The simplest concept of diffusion in a radial flow machine is one where the swirl
velocity is reduced by an increase in radius (conservation of angular momentum) and
the radial velocity component is controlled by the radial flow area. From continuity,
since m

. = rAcr = 2prbrcr, where b is the width of passage, then

(7.30)

Assuming the flow is frictionless in the diffuser, the angular momentum is constant and
cq = cq2r2/r. Now the tangential velocity component cq is usually very much larger than
the radial velocity component cr; therefore, the ratio of inlet to outlet diffuser veloci-
ties c2/c3 is approximately r3/r2. Clearly, to obtain useful reductions in velocity, vane-
less diffusers must be large. This may not be a disadvantage in industrial applications
where weight and size may be of secondary importance compared with the cost of a
vaned diffuser. A factor in favour of vaneless diffusers is the wide operating range
obtainable, vaned diffusers being more sensitive to flow variation because of incidence
effects.

For a parallel-walled radial diffuser in incompressible flow, the continuity of mass
flow equation requires that rcr is constant. Assuming that rcq remains constant, then the
absolute flow angle a2 = tan-1(cq /cr) is also constant as the fluid is diffused outwards.
Under these conditions the flow path is a logarithmic spiral. The relationship between
the change in the circumferential angle Dq and the radius ratio of the flow in the dif-
fuser can be found from consideration of an element of the flow geometry shown in
Figure 7.15. For an increment in radius dr we have, r dq = dr tan a2 which, upon inte-
gration, gives

(7.31)

Values of Dq are shown in Figure 7.16 plotted against r3 /r2 for several values of a2. It
can be readily seen that when a2 > 70°, rather long flow paths are implied, friction
losses will be significant and the diffuser efficiency will be low.
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Vaned diffusers

In the vaned diffuser the vanes are used to remove the swirl of the fluid at a higher
rate than is possible by a simple increase in radius, thereby reducing the length of flow
path and diameter. The vaned diffuser is advantageous where small size is important.

There is a clearance between the impeller and vane leading edges amounting to about
0.04D2 for pumps and between 0.1D2 to 0.2D2 for compressors. This space constitutes
a vaneless diffuser and its functions are (i) to reduce the circumferential pressure gra-
dient at the impeller tip, (ii) to smooth out velocity variations between the impeller tip
and vanes, and (iii) to reduce the Mach number (for compressors) at entry to the vanes.

The flow follows an approximately logarithmic spiral path to the vanes after which
it is constrained by the diffuser channels. For rapid diffusion the axis of the channel is
straight and tangential to the spiral as shown. The passages are generally designed on
the basis of simple channel theory with an equivalent angle of divergence of between
8deg and 12deg to control separation. (See remarks in Chapter 2 on straight-walled
diffuser efficiency.)

In many applications of the centrifugal compressor, size is important and the outside
diameter must be minimised. With a vaned diffuser the channel length can be crucial

rdq

dr

r

a2

FIG. 7.15. Element of flow path in radial diffuser.
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when considering the final size of the compressor. Clements and Artt (1988) consid-
ered this and performed a series of experiments aimed at determining the optimum dif-
fuser channel length to width ratio, L/W. They found that, on the compressor they
tested, increasing L/W beyond 3.7 did not produce any improvement in the perform-
ance, the pressure gradient at that point having reached zero. Another significant result
found by them was that the pressure gradient in the diffuser channel when L/W > 2.13
was no greater than that which could be obtained in a vaneless diffuser. Hence, remov-
ing completely that portion of the diffuser after this point would yield the same pres-
sure recovery as with the full diffuser.

The number of diffuser vanes can also have a direct bearing on the efficiency and
surge margin of the compressor. It is now widely accepted that surge occurs at higher
flow rates when vaned diffusers are used than when a simple vaneless diffuser design
is adopted. Came and Herbert (1980) quoted an example where a reduction of the
number of diffuser vanes from 29 to 13 caused a significant improvement in the surge
margin. Generally, it is accepted that it is better to have fewer diffuser vanes than
impeller vanes in order to achieve a wide range of surge-free flow.

With several adjacent diffuser passages sharing the gas from one impeller passage,
the uneven velocity distribution from that passage results in alternate diffuser passages
being either starved or choked. This is an unstable situation leading to flow reversal in
the passages and to surge of the compressor. When the number of diffuser passages is
less than the number of impeller passages a more uniform total flow results.
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FIG. 7.16. Flow path data for parallel-walled radial diffuser (incompressible flow).



Choking in a compressor stage
When the through-flow velocity in a passage reaches the speed of sound at some

cross-section, the flow chokes. For the stationary inlet passage this means that no further
increase in mass flow is possible, either by decreasing the back pressure or by increas-
ing the rotational speed. Now the choking behaviour of rotating passages differs from
that of stationary passages, making separate analyses for the inlet, impeller and diffuser
a necessity. For each component a simple, one-dimensional approach is used assuming
that all flow processes are adiabatic and that the fluid is a perfect gas.

Inlet

Choking takes place when c2 = a2 = g RT. Since then

and

(7.37)

Assuming the flow in the inlet is isentropic,

and when c = a, M = 1, so that

(7.38)

Substituting eqns. (7.37) and (7.38) into the continuity equation, m
.

/A = rc = r(g RT)1/2,
then

(7.39)

Thus, since r0, a0 refer to inlet stagnation conditions which remain unchanged, the mass
flow rate at choking is constant.

Impeller

In the rotating impeller passages, flow conditions are referred to the factor 
which is constant according to eqn. (7.2). At the impeller inlet and 

for the special case cq1 = 0, note that When choking occurs in the
impeller passages it is the relative velocity w which equals the speed of sound at some
section. Now w2 = a2 = g RT and T01 = T + (g RT/2Cp) - (U2/2Cp), therefore

(7.40)

Assuming isentropic flow, r/r01 = (T/T01)1/(g-1). Using the continuity equation,

I h c h1 1
1
2 1

2
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(7.41)

If choking occurs in the rotating passages, eqn. (7.41) indicates that the mass flow is
dependent on the blade speed. As the speed of rotation is increased the compressor can
accept a greater mass flow, unless choking occurs in some other component of the com-
pressor. That the choking flow in an impeller can vary, depending on blade speed, may
seem at first rather surprising; the above analysis gives the reason for the variation of
the choking limit of a compressor.

Diffuser

The relation for the choking flow, eqn. (7.39) holds for the diffuser passages, it being
noted that stagnation conditions now refer to the diffuser and not the inlet. Thus

(7.42)

Clearly, stagnation conditions at diffuser inlet are dependent on the impeller process.
To find how the choking mass flow limit is affected by blade speed it is necessary to
refer back to inlet stagnation conditions.

Assuming a radial bladed impeller of efficiency hi then,

Hence

and

Now

therefore,

(7.43)
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In this analysis it should be noted that the diffuser process has been assumed to be
isentropic but the impeller process has been assumed anisantropic. Equation (7.43) indi-
cates that the choking mass flow can be varied by changing the impeller rotational speed.
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Problems
Note: In problems 2 to 6 assume g and R are 1.4 and 287J/(kg°C) respectively. In problems 1 to
4 assume the stagnation pressure and stagnation temperature at compressor entry are 101.3kPa
and 288K respectively.

1. A cheap radial-vaned centrifugal fan is required to provide a supply of pressurised air to a
furnace. The specification requires that the fan produce a total pressure rise equivalent to 7.5cm
of water at a volume flow rate of 0.2m3/s. The fan impeller is fabricated from 30 thin sheet metal
vanes, the ratio of the passage width to circumferential pitch at impeller exit being specified as
0.5 and the ratio of the radial velocity to blade tip speed as 0.1.

Assuming that the overall isentropic efficiency of the fan is 0.75 and that the slip can be esti-
mated from Stanitz’s expression, eqn. (7.18a), determine

(i) the vane tip speed;
(ii) the rotational speed and diameter of the impeller;

(iii) the power required to drive the fan if the mechanical efficiency is 0.95;
(iv) the specific speed.

For air assume the density is 1.2kg/m3.

2. The air entering the impeller of a centrifugal compressor has an absolute axial velocity of
100m/s. At rotor exit the relative air angle measured from the radial direction is 26°36 ¢, the 
radial component of velocity is 120m/s and the tip speed of the radial vanes is 500m/s. Determine
the power required to drive the compressor when the air flow rate is 2.5kg/s and the mechani-
cal efficiency is 95%. If the radius ratio of the impeller eye is 0.3, calculate a suitable inlet diam-
eter assuming the inlet flow is incompressible. Determine the overall total pressure ratio of the
compressor when the total-to-total efficiency is 80%, assuming the velocity at exit from the dif-
fuser is negligible.

3. A centrifugal compressor has an impeller tip speed of 366m/s. Determine the absolute
Mach number of the flow leaving the radial vanes of the impeller when the radial component of
velocity at impeller exit is 30.5m/s and the slip factor is 0.90. Given that the flow area at impeller
exit is 0.1m2 and the total-to-total efficiency of the impeller is 90%, determine the mass flow
rate.

4. The eye of a centrifugal compressor has a hub–tip radius ratio of 0.4, a maximum relative
flow Mach number of 0.9 and an absolute flow which is uniform and completely axial. Determine
the optimum speed of rotation for the condition of maximum mass flow given that the mass flow
rate is 4.536kg/s. Also, determine the outside diameter of the eye and the ratio of axial veloc-
ity/blade speed at the eye tip. Figure 7.4 may be used to assist the calculations.
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5. An experimental centrifugal compressor is fitted with free-vortex guide vanes in order to
reduce the relative air speed at inlet to the impeller. At the outer radius of the eye, air leaving
the guide vanes has a velocity of 91.5m/s at 20deg to the axial direction. Determine the inlet
relative Mach number, assuming frictionless flow through the guide vanes, and the impeller total-
to-total efficiency.

Other details of the compressor and its operating conditions are

Impeller entry tip diameter, 0.457 m
Impeller exit tip diameter, 0.762 m
Slip factor, 0.9
Radial component of velocity at impeller exit, 53.4 m/s
Rotational speed of impeller, 11,000 rev/min
Static pressure at impeller exit, 223 kPa (abs)

6. A centrifugal compressor has an impeller with 21 vanes, which are radial at exit, a vane-
less diffuser and no inlet guide vanes. At inlet the stagnation pressure is 100kPaabs and the 
stagnation temperature is 300K.

(i) Given that the mass flow rate is 2.3kg/s, the impeller tip speed is 500m/s and the mechan-
ical efficiency is 96%, determine the driving power on the shaft. Use eqn. (7.18a) for the
slip factor.

(ii) Determine the total and static pressures at diffuser exit when the velocity at that position is
100m/s. The total-to-total efficiency is 82%.

(iii) The reaction, which may be defined as for an axial flow compressor by eqn. (5.10b), is 0.5,
the absolute flow speed at impeller entry is 150m/s and the diffuser efficiency is 84%.
Determine the total and static pressures, absolute Mach number and radial component of
velocity at the impeller exit.

(iv) Determine the total-to-total efficiency for the impeller.
(v) Estimate the inlet/outlet radius ratio for the diffuser assuming the conservation of angular

momentum.
(vi) Find a suitable rotational speed for the impeller given an impeller tip width of 6mm.

7. A centrifugal pump is used to raise water against a static head of 18.0m. The suction 
and delivery pipes, both 0.15m diameter, have respectively, friction head losses amounting 
to 2.25 and 7.5 times the dynamic head. The impeller, which rotates at 1450 rev/min, is 0.25m
diameter with eight vanes, radius ratio 0.45, inclined backwards at b ¢2 = 60deg. The axial width
of the impeller is designed so as to give constant radial velocity at all radii and is 20mm at
impeller exit. Assuming a hydraulic efficiency of 0.82 and an overall efficiency of 0.72, 
determine

(i) the volume flow rate;
(ii) the slip factor using Busemann’s method;

(iii) the impeller vane inlet angle required for zero incidence angle;
(iv) the power required to drive the pump.

8. A centrifugal pump delivers 50dm3/s of water at an impeller speed of 1450 rev/min. The
impeller has eight vanes inclined backwards to the direction of rotation with an angle at the tip
of b ¢2 = 60°. The diameter of the impeller is twice the diameter of the shroud at inlet and the 
magnitude of the radial component of velocity at impeller exit is equal to that of the axial com-
ponent of velocity at the inlet. The impeller entry is designed for the optimum flow condition to
resist cavitation (see eqn. (7.8)), has a radius ratio of 0.35 and the blade shape corresponds to a
well-tested design giving a cavitation coefficient sb = 0.3.
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Assuming that the hydraulic efficiency is 70% and the mechanical efficiency is 90%, 
determine

(i) the diameter of the inlet;
(ii) the net positive suction head;

(iii) the impeller slip factor using Wiesner’s formula;
(iv) the head developed by the pump;
(v) the power input.

Also calculate values for slip factor using the equations of Stodola and Busemann, compar-
ing the answers obtained with the result found from Wiesner’s equation.

9. (a) Write down the advantages and disadvantages of using free-vortex guide vanes upstream
of the impeller of a high pressure ratio centrifugal compressor. What other sorts of guide vanes
can be used and how do they compare with free-vortex vanes?

(b) The inlet of a centrifugal air compressor has a shroud diameter of 0.2m and a hub diam-
eter of 0.105m. Free-vortex guide vanes are fitted in the duct upstream of the impeller so that
the flow on the shroud at the impeller inlet has a relative Mach number, Mr1 = 1.0, an absolute
flow angle of a1 = 20° and a relative flow angle b1 = 55°. At inlet the stagnation conditions are
288K and 105 Pa.

Assuming frictionless flow into the inlet, determine

(i) the rotational speed of the impeller;
(ii) the air mass flow.

(c) At exit from the radially-vaned impeller, the vanes have a radius of 0.16m and a design
point slip factor of 0.9. Assuming an impeller efficiency of 0.9, determine

(i) the shaft power input;
(ii) the impeller pressure ratio.
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CHAPTER 8

Radial Flow Gas Turbines
I like work; it fascinates me, I can sit and look at it for hours. (JEROME K.
JEROME, Three Men in a Boat.)

Introduction
The radial flow turbine has had a long history of development being first conceived

for the purpose of producing hydraulic power over 180 years ago. A French engineer,
Fourneyron, developed the first commercially successful hydraulic turbine (circa 1830)
and this was of the radial-outflow type. A radial-inflow type of hydraulic turbine was
built by Francis and Boyden in the USA (circa 1847) which gave excellent results and
was highly regarded. This type of machine is now known as the Francis turbine, a sim-
plified arrangement of it being shown in Figure 1.1. It will be observed that the flow
path followed is from the radial direction to what is substantially an axial direction. A
flow path in the reverse direction (radial outflow), for a single-stage turbine anyway,
creates several problems one of which (discussed later) is low specific work. However,
as pointed out by Shepherd (1956) radial-outflow steam turbines comprising many
stages have received considerable acceptance in Europe. Figure 8.1 from Kearton
(1951) shows diagrammatically the Ljungström steam turbine which, because of the
tremendous increase in specific volume of steam, makes the radial-outflow flow path
virtually imperative. A unique feature of the Ljungström turbine is that it does not have
any stationary blade rows. The two rows of blades comprising each of the stages rotate
in opposite directions so that they can both be regarded as rotors.

The inward-flow radial (IFR) turbine covers tremendous ranges of power, rates of
mass flow and rotational speeds, from very large Francis turbines used in hydroelec-
tric power generation and developing hundreds of megawatts down to tiny closed cycle
gas turbines for space power generation of a few kilowatts.

The IFR turbine has been, and continues to be, used extensively for powering auto-
motive turbocharges, aircraft auxiliary power units, expansion units in gas liquefaction
and other cryogenic systems and as a component of the small (10kW) gas turbines used
for space power generation (Anon. 1971). It has been considered for primary power
use in automobiles and in helicopters. According to Huntsman et al. (1992), studies at
Rolls-Royce have shown that a cooled, high efficiency IFR turbine could offer signifi-
cant improvement in performance as the gas generator turbine of a high technology 
turboshaft engine. What is needed to enable this type of application are some small
improvements in current technology levels! However, designers of this new required
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generation of IFR turbines face considerable problems, particularly in the development
of advanced techniques of rotor cooling or of ceramic, shock-resistant rotors.

As indicated later in this chapter, over a limited range of specific speed, IFR turbines
provide an efficiency about equal to that of the best axial-flow turbines. The significant
advantages offered by the IFR turbine compared with the axial-flow turbine is the
greater amount of work that can be obtained per stage, the ease of manufacture and its
superior ruggedness.

Types of inward-flow radial turbine
In the centripetal turbine energy is transferred from the fluid to the rotor in passing

from a large radius to a small radius. For the production of positive work the product
of Ucq at entry to the rotor must be greater than Ucq at rotor exit (eqn. (2.12b)). This
is usually arranged by imparting a large component of tangential velocity at rotor entry,
using single or multiple nozzles, and allowing little or no swirl in the exit absolute flow.

Cantilever turbine

Figure 8.2a shows a cantilever IFR turbine where the blades are limited to the region
of the rotor tip, extending from the rotor in the axial direction. In practice the cantilever
blades are usually of the impulse type (i.e. low reaction), by which it is implied that
there is little change in relative velocity at inlet and outlet of the rotor. There is no 
fundamental reason why the blading should not be of the reaction type. However, the
resulting expansion through the rotor would require an increase in flow area. This extra
flow area is extremely difficult to accommodate in a small radial distance, especially
as the radius decreases through the rotor row.

FIG. 8.1. Ljungström type outward flow radial turbine (adapted from Kearton 1951).



248 Fluid Mechanics, Thermodynamics of Turbomachinery

Aerodynamically, the cantilever turbine is similar to an axial-impulse turbine and
can even be designed by similar methods. Figure 8.2b shows the velocity triangles at
rotor inlet and outlet. The fact that the flow is radially inwards hardly alters the design
procedure because the blade radius ratio r2/r3 is close to unity anyway.

The 90deg IFR turbine

Because of its higher structural strength compared with the cantilever turbine, the 90
deg IFR turbine is the preferred type. Figure 8.3 shows a typical layout of a 90deg IFR
turbine; the inlet blade angle is generally made zero, a fact dictated by the material
strength and often high gas temperature. The rotor vanes are subject to high stress levels
caused by the centrifugal force field, together with a pulsating and often unsteady gas
flow at high temperatures. Despite possible performance gains the use of non-radial (or
swept) vanes is generally avoided, mainly because of the additional stresses which arise
due to bending. Nevertheless, despite this difficulty, Meitner and Glassman (1983) have
considered designs using sweptback vanes in assessing ways of increasing the work
output of IFR turbines.

From station 2 the rotor vanes extend radially inward and turn the flow into the axial
direction. The exit part of the vanes, called the exducer, is curved to remove most if
not all of the absolute tangential component of velocity. The 90deg IFR turbine or cen-
tripetal turbine is very similar in appearance to the centrifugal compressor of Chapter
7 but with the flow direction and blade motion reversed.

The fluid discharging from the turbine rotor may have a considerable velocity c3

and an axial diffuser (see Chapter 2) would normally be incorporated to recover 
most of the kinetic energy, 

1–
2 c2

3, which would otherwise be wasted. In hydraulic 

FIG. 8.2. Arrangement of cantilever turbine and velocity triangles at the design point.
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turbines (discussed in Chapter 9) a diffuser is invariably used and is called the 
draught tube.

In Figure 8.3 the velocity triangles are drawn to suggest that the inlet relative velocity,
w2, is radially inward, i.e. zero incidence flow, and the absolute flow at rotor exit, c3, is
axial. This configuration of the velocity triangles, popular with designers for many years,
is called the nominal design condition and will be considered in some detail in the fol-
lowing pages. Following this the so-called optimum efficiency design will be explained.

Thermodynamics of the 90deg IFR turbine
The complete adiabatic expansion process for a turbine comprising a nozzle blade

row, a radial rotor followed by a diffuser corresponding to the layout of Figure 8.3, is
represented by the Mollier diagram shown in Figure 8.4. In the turbine, frictional
processes cause the entropy to increase in all components and these irreversibilities are
implied in Figure 8.4.

Across the nozzle blades the stagnation enthalpy is assumed constant, h01 = h02 and,
therefore, the static enthalpy drop is

(8.1)

corresponding to the static pressure change from p1 to the lower pressure p2. The ideal
enthalpy change (h1 - h2s) is between these same two pressures but at constant entropy.

FIG. 8.3. Layout and velocity diagrams for a 90deg inward-flow radial turbine at the
nominal design point.
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In Chapter 7 it was shown that the rothalpy, I = h0 rel - 1–
2 U2, is constant for an adia-

batic irreversible flow process, relative to a rotating component. For the rotor of the 
90deg IFR turbine,

Thus, as h0 rel = h + 1–
2 w2,

(8.2)

In this analysis the reference point 2 (Figure 8.3) is taken to be at the inlet radius r2 of
the rotor (the blade tip speed U2 = Wr2). This implies that the nozzle irreversibilities
are lumped together with any friction losses occurring in the annular space between
nozzle exit and rotor entry (usually scroll losses are included as well).

Across the diffuser the stagnation enthalpy does not change, h03 = h04, but the static
enthalpy increases as a result of the velocity diffusion. Hence,

(8.3)

The specific work done by the fluid on the rotor is

As

after substituting eqn. (8.2).

FIG. 8.4. Mollier diagram for a 90deg inward-flow radial turbine and diffuser (at the
design point).

(8.4a)

(8.4)
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Basic design of the rotor
Each term in eqn. (8.4a) makes a contribution to the specific work done on the 

rotor. A significant contribution comes from the first term, namely 
1–
2 (U2

2 - U2
1), and is

the main reason why the inward flow turbine has such an advantage over the outward
flow turbine where the contribution from this term would be negative. For the axial
flow turbine, where U2 = U1, of course no contribution to the specific work is obtained
from this term. For the second term in eqn. (8.4a) a positive contribution to the spe-
cific work is obtained when w3 > w2. In fact, accelerating the relative velocity through
the rotor is a most useful aim of the designer as this is conducive to achieving a low
loss flow. The third term in eqn. (8.4a) indicates that the absolute velocity at rotor inlet
should be larger than at rotor outlet so as to increase the work input to the rotor. With
these considerations in mind the general shape of the velocity diagram shown in Figure
8.3 results.

Nominal design

The nominal design is defined by a relative flow of zero incidence at rotor inlet (i.e.
w2 = cr2) and an absolute flow at rotor exit which is axial (i.e. c3 = cx3). Thus, from eqn.
(8.4), with cq3 = 0 and cq2 = U2, the specific work for the nominal design is simply

(8.4b)

EXAMPLE 8.1. The rotor of an IFR turbine, which is designed to operate at the
nominal condition, is 23.76cm in diameter and rotates at 38,140 rev/min. At the design
point the absolute flow angle at rotor entry is 72deg. The rotor mean exit diameter is
one half of the rotor diameter and the relative velocity at rotor exit is twice the rela-
tive velocity at rotor inlet.

Determine the relative contributions to the specific work of each of the three terms
in eqn. (8.4a).

Solution. The blade tip speed is U2 = pND2/60 = p ¥ 38,140 ¥ 0.2376/60 =
474.5m/s.

Referring to Figure 8.3, w2 = U2 cot a2 = 154.17m/s, and c2 = U2 sina2 = 498.9m/s.

Hence, (U2
2 - U2

3) = U2
2(1 - 1/4) = 168,863m2/s2, w2

3 - w2
2 = 3 ¥ w2

2 = 71,305m2/s2 and
c2

2 - c2
3 = 210,115m2/s2. Thus, summing the values of the three terms and dividing by

2, we get DW = 225,142m2/s2.
The fractional inputs from each of the three terms are, for the U2 terms, 0.375; for

the w2 terms, 0.158; for the c2 terms, 0.467.
Finally, as a numerical check, the specific work is, DW = U2

2 = 474.52 = 225,150m2/s2

which, apart from some rounding errors, agrees with the above computations.

Spouting velocity

The term spouting velocity c0 (originating from hydraulic turbine practice) is defined
as that velocity which has an associated kinetic energy equal to the isentropic enthalpy
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drop from turbine inlet stagnation pressure p01 to the final exhaust pressure. The exhaust
pressure here can have several interpretations depending upon whether total or static
conditions are used in the related efficiency definition and upon whether or not a dif-
fuser is included with the turbine. Thus, when no diffuser is used

(8.5a)

or

(8.5b)

for the total and static cases respectively.
In an ideal (frictionless) radial turbine with complete recovery of the exhaust kinetic

energy, and with cq2 = U2,

At the best efficiency point of actual (frictional) 90deg IFR turbines it is found that
this velocity ratio is, generally, in the range 0.68 < U2/c0 < 0.71.

Nominal design point efficiency
Referring to Figure 8.4, the total-to-static efficiency in the absence of a diffuser is

defined as

(8.6)

The passage enthalpy losses can be expressed as a fraction (z) of the exit kinetic energy
relative to the nozzle row and the rotor, i.e.

(8.7a)

(8.7b)

for the rotor and nozzles respectively. It is noted that for a constant pressure process,
ds = dh/T, hence the approximation,

Substituting for the enthalpy losses in eqn. (8.6),

(8.8)

From the design point velocity triangles, Figure 8.3,

Thus substituting all these expressions in eqn. (8.8) and noting that U3 = U2r3 /r2,
then
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(8.9)

Usually r3 and b3 are taken to apply at the arithmetic mean radius, i.e. r3 = 1–
2 (r3t + r3h).

The temperature ratio (T3/T2) in eqn. (8.9) can be obtained as follows.
At the nominal design condition, referring to the velocity triangles of Figure 8.3, 

w2
3 - U2

3 = c2
3, and so eqn. (8.2) can be rewritten as

(8.2a)

This particular relationship, in the form I2 = h02 rel - 1–
2 U2

2 = h03 can be easily identified
in Figure 8.4.

Again, referring to the velocity triangles, w2 = U2 cot a2 and c3 = U3 cot b3, a useful
alternative form to eqn. (8.2a) is obtained,

(8.2b)

where U3 is written as U2r3 /r2. For a perfect gas the temperature ratio T3 /T2 can be easily
found. Substituting h = CpT = g RT/(g - 1) in eqn. (8.2b)

(8.2c)

where a2 = (gRT2)1/2 is the sonic velocity at temperature T2.
Generally this temperature ratio will have only a very minor effect upon the 

numerical value of hts and so it is often ignored in calculations. Thus,

(8.9a)

is the expression normally used to determine the total-to-static efficiency. An alterna-
tive form for hts can be obtained by rewriting eqn. (8.6) as

(8.10)

where the spouting velocity c0 is defined by

(8.11)

A simple connection exists between total-to-total and total-to-static efficiency which
can be obtained as follows. Writing

then
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(8.12)

EXAMPLE 8.2. Performance data from the CAV type 01 radial turbine (Benson et al.
1968) operating at a pressure ratio p01/p3 of 1.5 with zero incidence relative flow onto
the rotor is presented in the following form:

where t is the torque, corrected for bearing friction loss. The principal dimensions and
angles, etc. are given as follows:

Rotor inlet diameter, 72.5mm
Rotor inlet width, 7.14mm
Rotor mean outlet diameter, 34.4mm
Rotor outlet annulus width, 20.1mm
Rotor inlet angle, 0deg
Rotor outlet angle, 53deg
Number of rotor blades, 10
Nozzle outlet diameter, 74.1mm
Nozzle outlet angle, 80deg
Nozzle blade number, 15

The turbine is “cold tested” with air heated to 400K (to prevent condensation erosion
of the blades). At nozzle outlet an estimate of the flow angle is given as 71deg and the
corresponding enthalpy loss coefficient is stated to be 0.065. Assuming that the absolute
flow at rotor exit is without swirl and uniform, and the relative flow leaves the rotor
without any deviation, determine the total-to-static and overall efficiencies of the
turbine, the rotor enthalpy loss coefficient and the rotor relative velocity ratio.

Solution. The data given are obtained from an actual turbine test and, even though
the bearing friction loss has been corrected, there is an additional reduction in the spe-
cific work delivered due to disk friction and tip leakage losses, etc. The rotor speed N
= 2410÷400 = 48,200 rev/min, the rotor tip speed U2 = pND2/60 = 183m/s and hence
the specific work done by the rotor DW = U2

2 = 33.48kJ/kg. The corresponding isen-
tropic total-to-static enthalpy drop is
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Thus, the total-to-static efficiency is

The actual specific work output to the shaft, after allowing for the bearing friction
loss, is

Thus, the turbine overall total-to-static efficiency is

By rearranging eqn. (8.9a) the rotor enthalpy loss coefficient can be obtained:

At rotor exit c3 is assumed to be uniform and axial. From the velocity triangles, Figure
8.3,

ignoring blade to blade velocity variations. Hence,

(8.13)

The lowest value of this relative velocity ratio occurs when r3 is least, i.e. r3 = r3h =
(34.4 - 20.1)/2 = 7.15mm, so that

The relative velocity ratio corresponding to the mean exit radius is

w
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It is worth commenting that higher total-to-static efficiencies have been obtained 
in other small radial turbines operating at higher pressure ratios. Rodgers (1969) has
suggested that total-to-static efficiencies in excess of 90% for pressure ratios up to 
five to one can be attained. Nusbaum and Kofskey (1969) reported an experimental
value of 88.8% for a small radial turbine (fitted with an outlet diffuser, admittedly!) 
at a pressure ratio p01/p4 of 1.763. In the design point exercise given above the high
rotor enthalpy loss coefficient and the corresponding relatively low total-to-static effi-
ciency may well be related to the low relative velocity ratio determined on the hub.
Matters are probably worse than this as the calculation is based only on a simple one-
dimensional treatment. In determining velocity ratios across the rotor, account should
also be taken of the effect of blade to blade velocity variation (outlined in this chapter)
as well as viscous effects. The number of vanes in the rotor (ten) may be insufficient
on the basis of Jamieson’s theory* (1955) which suggests 18 vanes (i.e. Zmin = 2p tan
a2). For this turbine, at lower nozzle exit angles, eqn. (8.13) suggests that the relative
velocity ratio becomes even less favourable despite the fact that the Jamieson blade
spacing criterion is being approached. (For Z = 10, the optimum value of a2 is about
58deg.)

Mach number relations
Assuming the fluid is a perfect gas, expressions can be deduced for the important

Mach numbers in the turbine. At nozzle outlet the absolute Mach number at the nominal
design point is

Now, .

where a2 = a01(T2/T01)1/2. Hence,

(8.14)

At rotor outlet the relative Mach number at the design point is defined by

T T c C T U Cp p2 01 2
2

01
1
2 2

2
22= - ( ) = - cosec2 a

*Included in a later part of this chapter.
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Now,

(8.15)

Loss coefficients in 90deg IFR turbines
There are a number of ways of representing the losses in the passages of 90deg 

IFR turbines and these have been listed and inter-related by Benson (1970). As well as
the nozzle and rotor passage losses there is a loss at rotor entry at off-design conditions.
This occurs when the relative flow entering the rotor is at some angle of incidence to the
radial vanes so that it can be called an incidence loss. It is often referred to as shock loss
but this can be a rather misleading term because, usually, there is no shock wave.

Nozzle loss coefficients

The enthalpy loss coefficient, which normally includes the inlet scroll losses, has
already been defined and is

(8.16)

Also in use is the velocity coefficient,

(8.17)

and the stagnation pressure loss coefficient,

(8.18a)

which can be related, approximately, to zN by

(8.18b)

Since

(8.19)

Practical values of fN for well-designed nozzle rows in normal operation are usually in
the range 0.90 � fN � 0.97.
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Rotor loss coefficients

At either the design condition (Figure 8.4), or at the off-design condition dealt with
later (Figure 8.5), the rotor passage friction losses can be expressed in terms of the fol-
lowing coefficients.

The enthalpy loss coefficient is

(8.20)

The velocity coefficient is

(8.21)

which is related to zR by

(8.22)

The normal range of f for well-designed rotors is approximately, 0.70 � fR � 0.85.

Optimum efficiency considerations
According to Abidat et al. (1992) the understanding of incidence effects on the rotors

of radial- and mixed-flow turbines is very limited. Normally, IFR turbines are made with
radial vanes in order to reduce bending stresses. In most flow analyses that have been
published of the IFR turbine, including all earlier editions of this text, it was assumed
that the average relative flow at entry to the rotor was radial, i.e. the incidence of the
relative flow approaching the radial vanes was zero. The following discussion of the
flow model will show that this is an over-simplification and the flow angle for optimum
efficiency is significantly different from zero incidence. Rohlik (1975) had asserted that
“there is some incidence angle that provides optimum flow conditions at the rotor-blade
leading edge. This angle has a value sometimes as high as 40° with a radial blade.”

The flow approaching the rotor is assumed to be in the radial plane with a velocity
c2 and flow angle a2 determined by the geometry of the nozzles or volute. Once the
fluid enters the rotor the process of work extraction proceeds rapidly with reduction in
the magnitude of the tangential velocity component and blade speed as the flow radius
decreases. Corresponding to these velocity changes is a high blade loading and an
accompanying large pressure gradient across the passage from the pressure side to the
suction side (Figure 8.5a).

With the rotor rotating at angular velocity W and the entering flow assumed to be
irrotational, a counter-rotating vortex (or relative eddy) is created in the relative flow,
whose magnitude is -W, which conserves the irrotational state. The effect is virtually
the same as that described earlier for the flow leaving the impeller of a centrifugal com-
pressor, but in reverse (see Chapter 7 under the heading “Slip factor”). As a result of
combining the incoming irrotational flow with the relative eddy, the relative velocity
on the pressure (or trailing) surface of the vane is reduced. Similarly, on the suction (or
leading) surface of the vane it is seen that the relative velocity is increased. Thus, a
static pressure gradient exists across the vane passage in agreement with the reasoning
of the preceding paragraph.



Radial Flow Gas Turbines 259

Figure 8.5b indicates the average relative velocity w2, entering the rotor at angle b2

and giving optimum flow conditions at the vane leading edge. As the rotor vanes in
IFR turbines are assumed to be radial, the angle b2 is an angle of incidence, and as
drawn it is numerically positive. Depending upon the number of rotor vanes this angle
may be between 20 and 40deg. The static pressure gradient across the passage causes
a streamline shift of the flow towards the suction surface. Streamfunction analyses of
this flow condition show that the streamline pattern properly locates the inlet stagna-
tion point on the vane leading edge so that this streamline is approximately radial (see
Figure 8.5a). It is reasoned that only at this flow condition will the fluid move smoothly
into the rotor passage. Thus, it is the averaged relative flow that is at an angle of inci-
dence b2 to the vane. Whitfield and Baines (1990) have comprehensively reviewed 
computational methods used in determining turbomachinery flows, including 
streamfunction methods.

Wilson and Jansen (1965) appear to have been the first to note that the optimum
angle of incidence was virtually identical to the angle of “slip” of the flow leaving the

P S P S

Direction
of rotation

(a)

a2 b2

w2

U2

c2

(b)

FIG. 8.5. Optimum flow condition at inlet to the rotor. (a) Streamline flow at rotor inlet;
p is for pressure surface, s is for suction surface. (b) Velocity diagram for the

pitchwise averaged flow.
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impeller of a radially bladed centrifugal compressor with the same number of vanes as
the turbine rotor. Following Whitfield and Baines (1990), an incidence factor, l, is
defined, analogous to the slip factor used in centrifugal compressors:

The slip factor most often used in determining the flow angle at rotor inlet is that devised
by Stanitz (1952) for radial vaned impellers, so for the incidence factor

(7.18a)

Thus, from the geometry of Figure 8.5b, we obtain

(8.23)

In order to determine the relative flow angle, b 2, we need to know, at least, the values
of the flow coefficient, f2 = cm2/U2 and the vane number Z. A simple method of deter-
mining the minimum number of vanes needed in the rotor, due to Jamieson (1955), is
given later in this chapter. However, in the next section an optimum efficiency design
method devised by Whitfield (1990) provides an alternative way for deriving b 2.

Design for optimum efficiency

Whitfield (1990) presented a general one-dimensional design procedure for the IFR
turbine in which, initially, only the required power output is specified. The specific
power output is given:

(8.24)

and, from this a non-dimensional power ratio, S, is defined:

(8.25)

The power ratio is related to the overall pressure ratio through the total-to-static 
efficiency:

(8.26)

If the power output, mass flow rate and inlet stagnation temperature are specified, then
S can be directly calculated but, if only the output power is known, then an iterative
procedure must be followed.

Whitfield (1990) chose to develop his procedure in terms of the power ratio S and
evolved a new non-dimensional design method. At a later stage of the design when the
rate of mass flow and inlet stagnation temperature can be quantified, then the actual
gas velocities and turbine size can be determined. Only the first part of Whitfield’s
method dealing with the rotor design is considered in this chapter.

Solution of Whitfield’s design problem

At the design point it is usually assumed that the fluid discharges from the rotor in
the axial direction so that with cq3 = 0, the specific work is

l = - ª -1 0 63 1 2. p Z Z
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and, combining this with eqns. (8.24) and (8.25), we obtain

(8.27)

where a01 = (g RT01)1/2 is the speed of sound corresponding to the temperature T01.
Now, from the velocity triangle at rotor inlet, Figure 8.5b,

(8.28)

Multiplying both sides of eqn. (8.28) by cq2/c2
m2, we get

But,

which can be written as a quadratic equation for tan a2:

where, for economy of writing, c = U2cq2/c2
2 and b = tan b 2. Solving for tan a2,

(8.29)

For a real solution to exist the radical must be greater than, or equal to, zero; i.e. b2

+ 4c(1 - c) � 0. Taking the zero case and rearranging the terms, another quadratic
equation is found, namely

Hence, solving for c,

(8.30)

From eqn. (8.29) and then eqn. (8.30), the corresponding solution for tan a2 is

The correct choice between these two solutions will give a value for a2 > 0; thus

(8.31)

It is easy to see from Table 8.1 that a simple numerical relation exists between these
two parameters, namely

(8.31a)

From eqns. (8.27) and (8.30), after some rearranging, a minimum stagnation Mach
number at rotor inlet can be found:

(8.32)

and the inlet Mach number can be determined using the equation
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(8.33)

assuming that T02 = T01, the flow through the stator is adiabatic.
Now, from eqn. (8.28)

After rearranging eqn. (8.31) to give

(8.34)

and combining these equations,

(8.35)

Equation (8.35) is a direct relationship between the number of rotor blades and the rel-
ative flow angle at inlet to the rotor. Also, from eqn. (8.31a),

so that, from the identity cos2a2 = 2cos2a2 - 1, we get the result

(8.31b)

using also eqn. (8.35).

EXAMPLE 8.3. An IFR turbine with 12 vanes is required to develop 230kW from 
a supply of dry air available at a stagnation temperature of 1050K and a flow rate of
1kg/s. Using the optimum efficiency design method and assuming a total-to-static 
efficiency of 0.81, determine

(i) the absolute and relative flow angles at rotor inlet;
(ii) the overall pressure ratio, p01/p3;

(iii) the rotor tip speed and the inlet absolute Mach number.

Solution. (i) From the gas tables, e.g. Rogers and Mayhew (1995), at T01 = 1050K,
we can find values for Cp = 1.1502kJ/kgK and g = 1.333. Using eqn. (8.25),

From Whitfield’s eqn. (8.31b),

and, from eqn. (8.31a), b2 = 2(90 - a2) = 33.56deg.

TABLE 8.1. Variation of a2 for several values of b2.

b2 (deg) 10 20 30 40

a2 (deg) 85 80 75 70
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(ii) Rewriting eqn. (8.26),

(iii) Using eqn. (8.32),

Using eqn. (8.33),

To find the rotor tip speed, substitute eqn. (8.35) into eqn. (8.27) to obtain

where , and T02 = T01 is assumed.

Criterion for minimum number of blades
The following simple analysis of the relative flow in a radially bladed rotor is of con-

siderable interest as it illustrates an important fundamental point concerning blade
spacing. From elementary mechanics, the radial and transverse components of accel-
eration, fr and ft respectively, of a particle moving in a radial plane (Figure 8.6a) are

(8.36a)

(8.36b)

where w is the radial velocity, w
. = (dw)/(dt) = w(∂w)/(∂r) (for steady flow), W is the

angular velocity and W
.

= dW/dt is set equal to zero.
Applying Newton’s second law of motion to a fluid element (as shown in Figure 6.2)

of unit depth, ignoring viscous forces, but putting cr = w, the radial equation of motion
is

where the elementary mass dm = rrdqdr. After simplifying and substituting for fr from
eqn. (8.25a), the following result is obtained,

(8.37)

Integrating eqn. (8.37) with respect to r obtains

a RT01 01 1 333 2 871 050 633 8= = ¥ =g . , , . m s
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(8.38)

which is merely the inviscid form of eqn. (8.2).
The torque transmitted to the rotor by the fluid manifests itself as a pressure differ-

ence across each radial vane. Consequently, there must be a pressure gradient in the
tangential direction in the space between the vanes. Again, consider the element of fluid
and apply Newton’s second law of motion in the tangential direction

Hence,

(8.39)

which establishes the magnitude of the tangential pressure gradient. Differentiating eqn.
(8.38) with respect to q,

(8.40)

FIG. 8.6. Flow models used in analysis of minimum number of blades.
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Thus, combining eqns. (8.39) and (8.40) gives

(8.41)

This result establishes the important fact that the radial velocity is not uniform across
the passage as is frequently assumed. As a consequence of this fact the radial velocity
on one side of a passage is lower than on the other side. Jamieson (1955), who origi-
nated this method, conceived the idea of determining the minimum number of blades
based upon these velocity considerations.

Let the mean radial velocity be w– and the angular space between two adjacent blades
be Dq = 2p/Z where Z is the number of blades. The maximum and minimum radial
velocities are, therefore,

(8.42a)

(8.42b)

using eqn. (8.41).
Making the reasonable assumption that the radial velocity should not drop below

zero (see Figure 8.6b), then the limiting case occurs at the rotor tip, r = r2 with wmin =
0. From eqn. (8.42b) with U2 = Wr2, the minimum number of rotor blades is

(8.43a)

At the design condition, U2 = w–2 tan a2, hence

(8.43b)

Jamieson’s result, eqn. (8.43b), is plotted in Figure 8.7 and shows that a large number
of rotor vanes are required, especially for high absolute flow angles at rotor inlet. In
practice a large number of vanes are not used for several reasons, e.g. excessive flow
blockage at rotor exit, a disproportionally large “wetted” surface area causing high fric-
tion losses, and the weight and inertia of the rotor become relatively high.

Some experimental tests reported by Hiett and Johnston (1964) are of interest in con-
nection with the analysis presented above. With a nozzle outlet angle a2 = 77deg and
a 12 vane rotor, a total-to-static efficiency hts = 0.84 was measured at the optimum
velocity ratio U2/c0. For that magnitude of flow angle, eqn. (8.43b) suggests 27 vanes
would be required in order to avoid reverse flow at the rotor tip. However, a second
test with the number of vanes increased to 24 produced a gain in efficiency of only 1%.
Hiett and Johnston suggested that the criterion for the optimum number of vanes might
not simply be the avoidance of local flow reversal but require a compromise between
total pressure losses from this cause and friction losses based upon rotor and blade
surface areas.

Glassman (1976) preferred to use an empirical relationship between Z and a2, namely

(8.44)

as he also considered Jamieson’s result, eqn. (8.43b), gave too many vanes in the rotor.
Glassman’s result, which gives far fewer vanes than Jamieson’s is plotted in Figure 8.7.
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Whitfield’s result given in eqn. (8.31b), is not too dissimilar from the result given by
Glassman’s equation, at least for low vane numbers.

Design considerations for rotor exit
Several decisions need to be made regarding the design of the rotor exit. The flow

angle b 3, the meridional velocity to blade tip speed ratio, cm3/U2, the shroud tip to rotor
tip radius ratio, r3s /r2, and the exit hub to shroud radius ratio, � = r3h/r3s, all have to be
considered. (It is assumed that the absolute flow at rotor exit is entirely axial so that
the relative velocity can be written

If values of cm3 /U2 and r3av/r2 can be chosen, then the exit flow angle variation can be
found for all radii. From the rotor exit velocity diagram in Figure 8.3,

(8.45)

The meridional velocity cm3 should be kept small in order to minimise the exhaust
energy loss, unless an exhaust diffuser is fitted to the turbine.

Rodgers and Geiser (1987) correlated attainable efficiency levels of IFR turbines
against the blade tip speed–spouting velocity ratio, U2/c0, and the axial exit flow coef-
ficient, cm3 /U2, and their result is shown in Figure 8.8. From this figure it can be seen
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FIG. 8.7. Flow angle at rotor inlet as a function of the number of rotor vanes.
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that peak efficiency values are obtained with velocity ratios close to 0.7 and with values
of exit flow coefficient between 0.2 and 0.3.

Rohlik (1968) suggested that the ratio of mean rotor exit radius to rotor inlet radius,
r3av /r2, should not exceed 0.7 to avoid excessive curvature of the shroud. Also, the exit
hub to shroud radius ratio, r3h /r3s, should not be less than 0.4 because of the likelihood
of flow blockage caused by closely spaced vanes. Based upon the metal thickness alone
it is easily shown that

where t3h is the vane thickness at the hub. It is also necessary to allow more than 
this thickness because of the boundary layers on each vane. Some of the rather 
limited test data available on the design of the rotor exit comes from Rodgers and Geiser
(1987) and concerns the effect of rotor radius ratio and blade solidity on turbine effi-
ciency (see Figure 8.9). It is the relative efficiency variation, h/hopt, that is depicted as
a function of the rotor inlet radius–exit root mean square radius ratio, r2/r3rms, for various
values of a blade solidity parameter, ZL/D2 (where L is the length of the blade along
the mean meridion). This radius ratio is related to the rotor exit hub to shroud ratio, �,
by

From Figure 8.9, for r2/r3rms, a value between 1.6 and 1.8 appears to be the 
optimum.

Rohlik (1968) suggested that the ratio of the relative velocity at the mean exit 
radius to the inlet relative velocity, w3av/w2, should be sufficiently high to assure a low
total pressure loss. He gave w3av/w2 a value of 2.0. The relative velocity at the shroud
tip will be greater than that at the mean radius depending upon the radius ratio at rotor
exit.
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FIG. 8.8. Correlation of attainable efficiency levels of IFR turbines against velocity
ratios (adapted from Rodgers and Geiser 1987).
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EXAMPLE 8.4. Given the following data for an IFR turbine

determine the ratio of the relative velocity ratio, w3s /w2 at the shroud.

Solution. As w3s /cm3 = secb 3s and w3av/cm3 = secb3av, then

From eqn. (8.45),

The relative velocity ratio will increase progressively from the hub to the shroud.

EXAMPLE 8.5. Using the data and results given in Examples 8.3 and 8.4 together
with the additional information that
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FIG. 8.9. Effects of vane solidity and rotor radius ratio on the efficiency ratio of the
IFR turbine (adapted from Rodgers and Geiser 1987).
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(a) the static pressure at rotor exit is 100kPa, and
(b) the nozzle enthalpy loss coefficient, zN = 0.06,

determine
(i) the diameter of the rotor and its speed of rotation;
(ii) the vane width to diameter ratio, b2/D2 at rotor inlet.

Solution. (i) The rate of mass flow is given by

From eqn. (8.25), T03 = T01(1 - S) = 1050 ¥ 0.8 = 840K.

Hence, T3 = 832.1K.
Substituting values into the mass flow equation above,

(ii) The rate of mass flow equation is now written as

Solving for the absolute velocity at rotor inlet and its components,

To obtain a value for the static density, r2, we need to determine T2 and p2:
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Incidence losses
At off-design conditions of operation with the fluid entering the rotor at a relative

flow angle, b 2, different from the optimum relative flow angle, b 2,opt, an additional loss
due to an effective angle of incidence, i2 = b 2 - b 2,opt, will be incurred. Operationally,
off-design conditions can arise from changes in

(i) the rotational speed of the rotor,
(ii) the rate of mass flow,

(iii) the setting angle of the stator vanes.

Because of its inertia the speed of the rotor can change only relatively slowly, whereas
the flow rate can change very rapidly, as it does in the pulsating flow of turbomachine
turbines. The time required to alter the stator vane setting angle will also be relatively
long.

Futral and Wasserbauer (1965) defined the incidence loss as equal to the kinetic
energy corresponding to the component of velocity normal to the rotor vane at inlet.
This may be made clearer by referring to the Mollier diagram and velocity diagrams
of Figure 8.10. Immediately before entering the rotor the relative velocity is w2¢.
Immediately after entering the rotor the relative velocity is changed, hypothetically, to
w2. Clearly, in reality this change cannot take place so abruptly and will require some
finite distance for it to occur. Nevertheless, it is convenient to consider that the change
in velocity occurs suddenly, at one radius and is the basis of the so-called shock-loss
model used at one time to estimate the incidence loss.

The method used by NASA to evaluate the incidence loss was described by 
Meitner and Glassman (1983) and was based upon a re-evaluation of the experi-
mental data of Kofskey and Nusbaum (1972). They adopted the following equation
devised originally by Roelke (1973) to evaluate the incidence losses in axial flow 
turbines:

(8.46)

Based upon data relating to six stators and one rotor, they found values for the expo-
nent n which depended upon whether the incidence was positive or negative. With the
present angle convention,
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Figure 8.11 shows the variation of the incidence loss function (1 - cosni) for a range
of the incidence angle i using the appropriate values of n.

EXAMPLE 8.6. (a) For the IFR turbine described in Example 8.3, and using the data
and results in Examples 8.4 and 8.5, deduce a value for the rotor enthalpy loss coeffi-
cient, zR, at the optimum efficiency flow condition.

(b) The rotor speed of rotation is now reduced so that the relative flow enters the
rotor radially (i.e. at the nominal flow condition). Assuming that the enthalpy loss 
coefficients, zN and zR, remain the same, determine the total-to-static efficiency of 
the turbine for this off-design condition.

Solution. (a) From eqn. (8.10), solving for zR,

h

01

P 01

P 1

02¢rel

P 02¢ re
l

P 02rel

02rel

P 2

1

2s
2¢

2

P 3

3ss

3s¢
3s

3

s

(1) b2¢

w2¢

(2)

b2, opt

w2

(a)

(b)

FIG. 8.10. (a) Simple flow model of the relative velocity vector (1) immediately before
entry to the rotor, (2) immediately after entry to the rotor. (b) Mollier diagram

indicating the corresponding entropy increase, (s3s - s3s¢), and enthalpy “loss”, (h2 -
h2¢), as a constant pressure process resulting from non-optimum flow incidence.
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We need to find values for c0, c3, w3 and c2.
From the data,

(b) Modifying the simplified expression for hts, eqn. (8.10), to include the incidence
loss term given above,

As noted earlier, eqn. (8.10) is an approximation which ignores the weak effect of the
temperature ratio T3/T2 upon the value of hts. In this expression w2 = cm2, the relative
velocity at rotor entry, i = -b2,opt = -33.56deg and n = 1.75. Hence, (1 - cos1.75 33.56)
= 0.2732.
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FIG. 8.11. Variation of incidence loss function at rotor inlet as a function of the
incidence angle.
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This example demonstrates that the efficiency reduction when operating at the nominal
design state is only 1% and shows the relative insensitivity of the IFR turbine to 
operating at this off-design condition. At other off-design conditions the inlet relative
velocity w2 could be much bigger and the incidence loss correspondingly larger.

Significance and application of specific speed
The concept of specific speed Ns has already been discussed in Chapter 1 and some

applications of it have been made already. Specific speed is extensively used to describe
turbomachinery operating requirements in terms of shaft speed, volume flow rate and
ideal specific work (alternatively, power developed is used instead of specific work).
Originally, specific speed was applied almost exclusively to incompressible flow
machines as a tool in the selection of the optimum type and size of unit. Its applica-
tion to units handling compressible fluids was somewhat inhibited, due, it would appear,
to the fact that volume flow rate changes through the machine, which raised the
awkward question of which flow rate should be used in the specific speed definition.
According to Balje (1981), the significant volume flow rate which should be used 
for turbines is that in the rotor exit, Q3. This has now been widely adopted by many
authorities.

Wood (1963) found it useful to factorise the basic definition of the specific speed
equation, eqn. (1.8), in terms of the geometry and flow conditions within the radial-
inflow turbine. Adopting the non-dimensional form of specific speed, in order to avoid
ambiguities,

(8.47)

where N is in rev/s, Q3 is in m3/s and the isentropic total-to-total enthalpy drop Dh0s

(from turbine inlet to exhaust) is in J/kg (i.e. m2/s2).
For the 90deg IFR turbine, writing U2 = pND2 and , eqn. (8.47) can be

factorised as follows:

(8.48)

For the ideal 90deg IFR turbine and with c02 = U2, it was shown earlier that the blade
speed to spouting velocity ratio, U2/c0 = 1/÷2 = 0.707. Substituting this value into eqn.
(8.34),

Dh cs0
1
2 0

2=
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(8.48a)

i.e. specific speed is directly proportional to the square root of the volumetric flow 
coefficient.

To obtain some physical significance from eqns. (8.47) and (8.48a), define a rotor
disc area Ad = pD2

2/4 and assume a uniform axial rotor exit velocity c3 so that Q3 = A3c3,
then as

Hence,

(8.48b)

or

(8.48c)

In an early study of IFR turbine design for maximum efficiency, Rohlik (1968) spec-
ified that the ratio of the rotor shroud diameter to rotor inlet diameter should be limited
to a maximum value of 0.7 to avoid excessive shroud curvature and that the exit hub
to shroud tip ratio was limited to a minimum of 0.4 to avoid excess hub blade block-
age and loss. Using this as data, an upper limit for A3 /Ad can be found,

Figure 8.12 shows the relationship between Ws, the exhaust energy factor (c3 /c0)2 and
the area ratio A3 /Ad based upon eqn. (8.48c). According to Wood (1963), the limits for
the exhaust energy factor in gas turbine practice are 0.04 < (c3 /c0)2 < 0.30, the lower
value being apparently a flow stability limit.

The numerical value of specific speed provides a general index of flow capacity rela-
tive to work output. Low values of Ws are associated with relatively small flow passage
areas and high values with relatively large flow passage areas. Specific speed has also
been widely used as a general indication of achievable efficiency. Figure 8.13 presents
a broad correlation of maximum efficiencies for hydraulic and compressible fluid 
turbines as functions of specific speed. These efficiencies apply to favourable design
conditions with high values of flow Reynolds number, efficient diffusers and low
leakage losses at the blade tips. It is seen that over a limited range of specific speed 
the best radial-flow turbines match the best axial-flow turbine efficiency, but from 
Ws = 0.03 to 10, no other form of turbine handling compressible fluids can exceed 
the peak performance capability of the axial turbine.
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Over the fairly limited range of specific speed (0.3 � Ws < 1.0) that the IFR turbine
can produce a high efficiency, it is difficult to find a decisive performance advantage
in favour of either the axial flow turbine or the radial-flow turbine. New methods of
fabrication enable the blades of small axial-flow turbines to be cast integrally with the
rotor so that both types of turbine can operate at about the same blade tip speed. Wood
(1963) compared the relative merits of axial and radial gas turbines at some length. In

FIG. 8.12. Specific speed function for a 90deg inward flow radial turbine (adapted
from Wood 1963).

FIG. 8.13. Specific speed-efficiency characteristics for various turbines (adapted from
Wood 1963).
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general, although weight, bulk and diameter are greater for radial than axial turbines,
the differences are not so large and mechanical design compatibility can reverse the
difference in a complete gas turbine power plant. The NASA nuclear Brayton cycle
space power studies were all made with 90deg IFR turbines rather than with axial flow
turbines.

The design problems of a small axial-flow turbine were discussed by Dunham and
Panton (1973) who studied the cold performance measurements made on a single-shaft
turbine of 13cm diameter, about the same size as the IFR turbines tested by NASA.
Tests had been performed with four different rotors to try to determine the effects of
aspect ratio, trailing edge thickness, Reynolds number and tip clearance. One turbine
build achieved a total-to-total efficiency of 90%, about equal to that of the best IFR
turbine. However, because of the much higher outlet velocity, the total-to-static effi-
ciency of the axial turbine gave a less satisfactory value (84%) than the IFR type which
could be decisive in some applications. They also confirmed that the axial turbine tip
clearance was comparatively large, losing 2% efficiency for every 1% increase in clear-
ance. The tests illustrated one major design problem of a small axial turbine which was
the extreme thinness of the blade trailing edges needed to achieve the efficiencies stated.

Optimum design selection of 90deg IFR turbines
Rohlik (1968) has examined analytically the performance of 90deg inward-flow

radial turbines in order to determine optimum design geometry for various applications
as characterised by specific speed. His procedure, which extends an earlier treatment
of Wood (1963) was used to determine the design point losses and corresponding effi-
ciencies for various combinations of nozzle exit flow angle a2, rotor diameter ratio
D2/D3av and rotor blade entry height to exit diameter ratio, b2/D3av. The losses taken into
account in the calculations are those associated with

(i) nozzle blade row boundary layers,
(ii) rotor passage boundary layers,

(iii) rotor blade tip clearance,
(iv) disc windage (on the back surface of the rotor),
(v) kinetic energy loss at exit.

A mean-flowpath analysis was used and the passage losses were based upon the data
of Stewart et al. (1960). The main constraints in the analysis were

(i) w3av /w2 = 2.0
(ii) cq3 = 0

(iii) b 2 = b 2,opt, i.e. zero incidence
(iv) r3s /r2 = 0.7
(v) r3h /r3s = 0.4.

Figure 8.14 shows the variation in total-to-static efficiency with specific speed (Ws)
for a selection of nozzle exit flow angles, a2. For each value of a2 a hatched area is
drawn, inside of which the various diameter ratios are varied. The envelope of
maximum hts is bounded by the constraints D3h /D3s = 0.4 in all cases and D3s /D2 = 0.7
for Ws � 0.58 in these hatched regions. This envelope is the optimum geometry curve
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and has a peak hts of 0.87 at Ws = 0.58 rad. An interesting comparison is made by Rohlik
with the experimental results obtained by Kofskey and Wasserbauer (1966) on a single
90deg IFR turbine rotor operated with several nozzle blade row configurations. The
peak value of hts from this experimental investigation also turned out to be 0.87 at a
slightly higher specific speed, Ws = 0.64 rad.

The distribution of losses for optimum geometry over the specific speed range is
shown in Figure 8.15. The way the loss distributions change is a result of the chang-

FIG. 8.14. Calculated performance of 90deg IFR turbine (adapted from Rohlick 1968).

FIG. 8.15. Distribution of losses along envelope of maximum total-to-static efficiency
(adapted from Rohlik 1968).
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ing ratio of flow to specific work. At low Ws all friction losses are relatively large
because of the high ratios of surface area to flow area. At high Ws the high velocities
at turbine exit cause the kinetic energy leaving loss to predominate. Figure 8.16 shows
several meridional plane sections at three values of specific speed corresponding to the
curve of maximum total-to-static efficiency. The ratio of nozzle exit height to rotor
diameter, b2/D2, is shown in Figure 8.17, the general rise of this ratio with increasing
Ws reflecting the increase in nozzle flow area* accompanying the larger flow rates of
higher specific speed. Figure 8.17 also shows the variation of U2/c0 with Ws along the
curve of maximum total-to-static efficiency.

Clearance and windage losses
A clearance gap must exist between the rotor vanes and the shroud. Because of the

pressure difference between the pressure and suction surfaces of a vane, a leakage flow

FIG. 8.16. Sections of radial turbines of maximum static efficiency (adapted from
Rohlik 1968).

FIG. 8.17. Variation in blade speed–spouting velocity ratio (U2/c0) and nozzle blade
height/rotor inlet diameter (b2/D2) corresponding to maximum total-to-static efficiency

with specific speed (adapted from Rohlik 1968).

*The ratio b2/D2 is also affected by the pressure ratio and this has not been shown.



Radial Flow Gas Turbines 279

occurs through the gap introducing a loss in efficiency of the turbine. The minimum
clearance is usually a compromise between manufacturing difficulty and aerodynamic
requirements. Often, the minimum clearance is determined by the differential expan-
sion and cooling of components under transient operating conditions which can com-
promise the steady state operating condition. According to Rohlik (1968) the loss 
in specific work as a result of gap leakage can be determined with the simple 
proportionality:

(8.49)

where Dh0 is the turbine specific work uncorrected for clearance or windage losses and
c/bav is the ratio of the gap to average vane height (i.e. ). A constant
axial and radial gap, c = 0.25mm, was used in the analytical study of Rohlik quoted
earlier. According to Rodgers (1969) extensive development on small gas turbines has
shown that it is difficult to maintain clearances less than about 0.4mm. One conse-
quence of this is that as small gas turbines are made progressively smaller the relative
magnitude of the clearance loss must increase.

The non-dimensional power loss due to windage on the back of the rotor has been
given by Shepherd (1956) in the form

where W is the rotational speed of the rotor and Re is a Reynolds number. Rohlik (1968)
used this expression to calculate the loss in specific work due to windage,

(8.50)

where m
.

is the total rate of mass flow entering the turbine and the Reynolds number is
defined by Re = U2D2/�2, �2 being the kinematic viscosity of the gas corresponding to
the static temperature T2 at nozzle exit.

Pressure ratio limits of the 90deg IFR turbine
Every turbine type has pressure ratio limits, which are reached when the flow chokes.

Choking usually occurs when the absolute flow at rotor exit reaches sonic velocity. (It
can also occur when the relative velocity within the rotor reaches sonic conditions.) In
the following analysis it is assumed that the turbine first chokes when the absolute exit
velocity c3 reaches the speed of sound. It is also assumed that c3 is without swirl and
that the fluid is a perfect gas.

For simplicity it is also assumed that the diffuser efficiency is 100% so that, refer-
ring to Figure 8.4, T04ss = T03ss(p03 = p04). Thus, the turbine total-to-total efficiency is

(8.51)

The expression for the spouting velocity, now becomes

and is substituted into eqn. (8.51) to give

b b bav = +( )1
2 2 3



280 Fluid Mechanics, Thermodynamics of Turbomachinery

(8.52)

The stagnation pressure ratio across the turbine stage is given by p03/p01 =
(T03ss /T01)g /(g-1); substituting this into eqn. (8.52) and rearranging, the exhaust energy
factor is

(8.53)

Now and

therefore,

(8.54)

With further manipulation of eqn. (8.53) and using eqn. (8.54) the stagnation pressure
ratio is expressed explicitly as

(8.55)

Wood (1963) has calculated the pressure ratio (p01/p03) using this expression, with ht =
0.9, g = 1.4 and for M3 = 0.7 and 1.0. The result is shown in Figure 8.14. In practice,
exhaust choking effectively occurs at nominal values of M3 � 0.7 (instead of at the
ideal value of M3 = 1.0) due to non-uniform exit flow.

The kinetic energy ratio (c3 /c0)2 has a first order effect on the pressure ratio limits of
single-stage turbines. The effect of any exhaust swirl present would be to lower the
limits of choking pressure ratio.

It has been observed by Wood that high pressure ratios tend to compel the use of
lower specific speeds. This assertion can be demonstrated by means of Figure 8.12
taken together with Figure 8.18. In Figure 8.12, for a given value of A3 /Ad, Ws increases
with (c3 /c0)2 increasing. From Figure 8.18, (p01/p03) decreases with increasing values of
(c3 /c0)2. Thus, for a given value of (c3 /c0)2, the specific speed must decrease as the
design pressure ratio is increased.

Cooled 90deg IFR turbines
The incentive to use higher temperatures in the basic Brayton gas turbine cycle is

well known and arises from a desire to increase cycle efficiency and specific work
output. In all gas turbines designed for high efficiency a compromise is necessary
between the turbine inlet temperature desired and the temperature which can be 
tolerated by the turbine materials used. This problem can be minimised by using an
auxiliary supply of cooling air to lower the temperature of the highly stressed parts 

T T M03 3
1
2 3

21 1= + -( )[ ]g



Radial Flow Gas Turbines 281

of the turbine exposed to the high temperature gas. Following the successful applica-
tion of blade cooling techniques to axial flow turbines (see, for example, Horlock 
1966 or Fullagar 1973), methods of cooling small radial gas turbines have been 
developed.

According to Rodgers (1969) the most practical method of cooling small radial 
turbines is by film (or veil) cooling, Figure 8.19, where cooling air is impinged on 
the rotor and vane tips. The main problem with this method of cooling being its 
relatively low cooling effectiveness, defined by

(8.56)

where Tm is the rotor metal temperature,

FIG. 8.18. Pressure ratio limit function for a turbine (Wood 1963) (By courtesy of the
American Society of Mechanical Engineers).

FIG. 8.19. Cross-section of film-cooled radial turbine.



282 Fluid Mechanics, Thermodynamics of Turbomachinery

Rodgers refers to tests which indicate the possibility of obtaining e = 0.30 at the rotor
tip section with a cooling flow of approximately 10% of the main gas flow. Since the
cool and hot streams rapidly mix, effectiveness decreases with distance from the point
of impingement. A model study of the heat transfer aspects of film-cooled radial-flow
gas turbines is given by Metzger and Mitchell (1966).

A radial turbine for wave energy conversion
Bi-directional flow axial flow air turbines using an oscillating water column (OWC)

to convert wave energy are being investigated and are described in Chapter 4. A
rather unusual application of the OWC, described by Setoguchi et al. (2002), employs
a bi-directional radial-flow turbine for energy conversion. Early studies of radial 
turbines using reaction-type rotor blading produced very low efficiencies. Some work
done by McCormick et al. (1992) and McCormick and Cochran (1993) indicated 
that higher efficiencies were obtained with impulse-type blading. Setoguchi et al.
noted that no detailed performance characteristics of impulse-type radial turbines using
this type of blading could be found in the literature and they set out to remedy the
defect.

Flow from
atmosphere

Flow

Settling
chamber

Rotor

Guide
vanes

Guide
vanes

To torque transducer and
servomotor-generator

Flow to
atmosphere

44 mm

f 214.2
mm
310 mm

FIG. 8.20. Schematic of radial turbine for wave energy conversion. (From Setoguchi
et al. 2002, by permission of the Council of the Institution of Mechanical Engineers.)
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FIG. 8.21. Velocity diagrams for radial turbine: (a) to atmosphere; (b) from
atmosphere. (From Setoguchi et al. 2002, by permission of the Council of the

Institution of Mechanical Engineers.)
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Turbine details

The radial turbine tested by Setoguchi et al. is shown schematically in Figure 8.20.
The test rig consisted of a large piston-cylinder (not shown) connected to a settling
chamber and the turbine. The piston could be driven under computer control, back 
and forth, to blow or suck air through the turbine either (i) quasi-steadily or (ii) as a
sinusoidally oscillating flow (at 0.1Hz).

Flow diagrams

One of several configurations of the rotor blades tested is shown in Figure 8.21. This
blade layout was a compromise but still fairly close to that giving the best performance
for the turbine. The corresponding velocity diagrams (exhaling and inhaling) are Figure
8.21a, flow to atmosphere, and Figure 8.21b, flow from the atmosphere. (N.B. All the
angles are shown with reference to the tangential direction, following the original
work.) Careful inspection of the absolute velocity directions at inlet to the exit guide
vanes (in both cases) reveals some surprises and is undoubtedly the cause of serious
total pressure losses! It is clearly desirable to have the absolute inlet flow angle almost
equal to the vane inlet angle in order to minimise incidence losses. It can be easily
determined that for the exhaling flow the incidence angle is over 57deg and for the
inhaling flow the incidence angle is over 33deg. With this sort of turbine configuration
it appears impossible to avoid quite large total pressure losses in the last row of blades
because of these high angles of incidence.
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FIG. 8.22. Measured efficiency under steady flow conditions to atmosphere for the
radial flow turbine. (From Setoguchi et al. 2002, by permission of the Council of the

Institution of Mechanical Engineers.)
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Measured performance

Figures 8.22 and 8.23 show the effect of the setting angle of the outer guide vanes
on the efficiency of the turbine under steady flow conditions. In Figure 8.22 the flow
is from the settling chamber to atmosphere (exhaling flow) and shows the efficiency vs
the flow coefficient, j for qi = 25° and qo = 15, 20, 25 and 30°. The maximum effi-
ciency obtained was 33% at j = 0.83 with qo = 30°. Similarly, in Figure 8.23, the inhal-
ing steady flow efficiency vs j again is for qi = 25° and qo = 15, 20, 25 and 30°. For
this flow direction the maximum efficiency was just over 35% at j = 0.6 with qo = 15°.
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Problems
1. A small inward radial flow gas turbine, comprising a ring of nozzle blades, a radial-vaned

rotor and an axial diffuser, operates at the nominal design point with a total-to-total efficiency
of 0.90. At turbine entry the stagnation pressure and temperature of the gas is 400kPa and 
1140K. The flow leaving the turbine is diffused to a pressure of 100kPa and has negligible final
velocity. Given that the flow is just choked at nozzle exit, determine the impeller peripheral 
speed and the flow outlet angle from the nozzles.

For the gas assume g = 1.333 and R = 287J/(kg°C).

2. The mass flow rate of gas through the turbine given in Problem 1 is 3.1kg/s, the ratio of
the rotor axial width–rotor tip radius (b2 /r2) is 0.1 and the nozzle isentropic velocity ratio (f 2) is
0.96. Assuming that the space between nozzle exit and rotor entry is negligible and ignoring the
effects of blade blockage, determine

(i) the static pressure and static temperature at nozzle exit;
(ii) the rotor tip diameter and rotational speed;

(iii) the power transmitted assuming a mechanical efficiency of 93.5%.

3. A radial turbine is proposed as the gas expansion element of a nuclear powered Brayton
cycle space power system. The pressure and temperature conditions through the stage at the
design point are to be as follows:

The ratio of rotor exit mean diameter to rotor inlet tip diameter is chosen as 0.49 and the required
rotational speed as 24,000 rev/min. Assuming the relative flow at rotor inlet is radial and the
absolute flow at rotor exit is axial, determine

(i) the total-to-static efficiency of the turbine;
(ii) the rotor diameter;

(iii) the implied enthalpy loss coefficients for the nozzles and rotor row.

The gas employed in this cycle is a mixture of helium and xenon with a molecular weight of
39.94 and a ratio of specific heats of 5/3. The universal gas constant is R0 = 8.314kJ/(kg-mol
K).

4. A film-cooled radial inflow turbine is to be used in a high performance open Brayton cycle
gas turbine. The rotor is made of a material able to withstand a temperature of 1145K at a tip
speed of 600m/s for short periods of operation. Cooling air is supplied by the compressor which
operates at a stagnation pressure ratio of 4 to 1, with an isentropic efficiency of 80%, when air
is admitted to the compressor at a stagnation temperature of 288K. Assuming that the effective-
ness of the film cooling is 0.30 and the cooling air temperature at turbine entry is the same as



288 Fluid Mechanics, Thermodynamics of Turbomachinery

that at compressor exit, determine the maximum permissible gas temperature at entry to the
turbine.

Take g = 1.4 for the air. Take g = 1.333 for the gas entering the turbine. Assume R = 287J/(kg
K) in both cases.

5. The radial inflow turbine in Problem 3 is designed for a specific speed Ws of 0.55 (rad).
Determine

(i) the volume flow rate and the turbine power output;
(ii) the rotor exit hub and tip diameters;

(iii) the nozzle exit flow angle and the rotor inlet passage width–diameter ratio, b2/D2.

6. An inward flow radial gas turbine with a rotor diameter of 23.76cm is designed to operate
with a gas mass flow of 1.0kg/s at a rotational speed of 38,140 rev/min. At the design condition
the inlet stagnation pressure and temperature are to be 300kPa and 727°C. The turbine is to be
“cold” tested in a laboratory where an air supply is available only at the stagnation conditions
of 200kPa and 102°C.

(a) Assuming dynamically similar conditions between those of the laboratory and the pro-
jected design determine, for the “cold” test, the equivalent mass flow rate and the speed of rota-
tion. Assume the gas properties are the same as for air.

(b) Using property tables for air, determine the Reynolds numbers for both the hot and cold
running conditions. The Reynolds number is defined in this context as

where r01 and m01 are the stagnation density and stagnation viscosity of the air, N is the rotational
speed (rev/s) and D is the rotor diameter.

7. For the radial flow turbine described in the previous question and operating at the pre-
scribed “hot” design point condition, the gas leaves the exducer directly to the atmosphere at a
pressure of 100kPa and without swirl. The absolute flow angle at rotor inlet is 72° to the radial
direction. The relative velocity w3 at the the mean radius of the exducer (which is one half of the
rotor inlet radius r2) is twice the rotor inlet relative velocity w2. The nozzle enthalpy loss coeffi-
cient, zN = 0.06.

Assuming the gas has the properties of air with an average value of g = 1.34 (this tempera-
ture range) and R = 287J/kgK, determine

(i) the total-to-static efficiency of the turbine;
(ii) the static temperature and pressure at the rotor inlet;

(iii) the axial width of the passage at inlet to the rotor;
(iv) the absolute velocity of the flow at exit from the exducer;
(v) the rotor enthalpy loss coefficient;

(vi) the radii of the exducer exit given that the radius ratio at that location is 0.4.

8. One of the early space power systems built and tested for NASA was based on the Brayton
cycle and incorporated an IFR turbine as the gas expander. Some of the data available concern-
ing the turbine are as follows:

Total-to-total pressure ratio (turbine inlet to turbine exit), p01/p03 = 1.560
Total-to-static pressure ratio, p01/p3 = 1.613
Total temperature at turbine entry, T01 = 1083 K
Total pressure at inlet to turbine, T01 = 91 kPa
Shaft power output (measured on a dynamometer), Pnet = 22.03 kW
Bearing and seal friction torque (a separate test), tf = 0.0794 Nm
Rotor diameter, D2 = 15.29 cm
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Absolute flow angle at rotor inlet, a2 = 72°
Absolute flow angle at rotor exit, a3 = 0°
The hub to shroud radius ratio at rotor exit, rh /rt = 0.35
Ratio of blade speed to jet speed, � = U2/c0 = 0.6958
(c0 based on total-to-static pressure ratio)

For reasons of crew safety, an inert gas argon (R = 208.2 J/(kgK), ratio of specific heats, g =
1.667) was used in the cycle. The turbine design scheme was based on the concept of optimum
efficiency.

Determine, for the design point

(i) the rotor vane tip speed;
(ii) the static pressure and temperature at rotor exit;

(iii) the gas exit velocity and mass flow rate;
(iv) the shroud radius at rotor exit;
(v) the relative flow angle at rotor inlet;

(vi) the specific speed.

N.B. The volume flow rate to be used in the definition of the specific speed is based on the rotor
exit conditions.



CHAPTER 9

Hydraulic Turbines
Hear ye not the hum of mighty workings? (KEATS, Sonnet No. 14.)
The power of water has changed more in this world than emperors or kings.
(Leonardo da Vinci.)

Introduction
To put this chapter into perspective some idea of the scale of hydropower develop-

ment in the world might be useful before delving into the intricacies of hydraulic tur-
bines. A very detailed and authoritative account of virtually every aspect of hydropower
is given by Raabe (1985) and this brief introduction serves merely to illustrate a few
aspects of a very extensive subject.

Hydropower is the longest established source for the generation of electric power
which, starting in 1880 as a small dc generating plant in Wisconsin, USA, developed
into an industrial size plant following the demonstration of the economic transmission
of high voltage ac at the Frankfurt Exhibition in 1891. Hydropower now has a world-
wide yearly growth rate of about 5% (i.e. doubling in size every 15 years). In 1980 the
worldwide installed generating capacity was 460GW according to the United Nations
(1981) so, by the year 2010, at the above growth rate this should have risen to a figure
of about 2000GW. The main areas with potential for growth are China, Latin America
and Africa.

Table 9.1 is an extract of data quoted by Raabe (1985) of the distribution of har-
nessed and harnessable potential of some of the countries with the biggest usable poten-
tial of hydropower. From this list it is seen that the People’s Republic of China, the
country with the largest harnessable potential in the world had, in 1974, harnessed only
4.22% of this. According to Cotillon (1978), with growth rates of 14.2% up to 1985
and then with a growth rate of 8%, the PRC should have harnessed about 26% of its
harvestable potential by the year 2000. This would need the installation of nearly 
4600MW per annum of new hydropower plant, and a challenge to the makers of tur-
bines around the world! One scheme in the PRC, under construction since 1992 and
scheduled for completion in 2009, is the Xanxia (Three Gorges) project on the Yangtse
which has a planned installed capacity of 25,000MW, and which would make it the
biggest hydropower plant in the world.

Features of hydropower plants

The initial cost of hydropower plants may be much higher than those of thermal
power plants. However, the present value of total costs (which includes those of fuel)
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is, in general, lower in hydropower plants. Raabe (1985) listed the various advantages
and disadvantages of hydropower plants and a brief summary of these is given in 
Table 9.2.

Hydraulic turbines
Early history of hydraulic turbines

The hydraulic turbine has a long period of development, its oldest and simplest form
being the waterwheel, first used in ancient Greece and subsequently adopted through-
out medieval Europe for the grinding of grain, etc. It was a French engineer, Benoit

TABLE 9.1. Distribution of harnessed and harnessable potential of hydroelectric power

Country Usable potential, Amount of potential Percentage of usable
TWh used, TWh potential

1 China (PRC) 1320 55.6 4.22
2 Former USSR 1095 180 16.45
3 USA 701.5 277.7 39.6
4 Zaire 660 4.3 0.65
5 Canada 535.2 251 46.9
6 Brazil 519.3 126.9 24.45
7 Malaysia 320 1.25 0.39
8 Columbia 300 13.8 4.6
9 India 280 46.87 16.7

Sum 1–9 5731 907.4 15.83
Other countries 4071 843 20.7

Total 9802.4 1750.5 17.8

TABLE 9.2. Features of hydroelectric powerplants

Advantages Disadvantages

Technology is relatively simple and Number of favourable sites limited and 
proven. High efficiency. Long useful available only in some countries. Problems
life. No thermal phenomena apart with cavitation and water hammer.
from those in bearings and generator.

Small operating, maintenance and High initial cost especially for low head plants 
replacement costs. compared with thermal power plants.

No air pollution. No thermal pollution of Inundation of the reservoirs and displacement of 
water. the population. Loss of arable land. Facilitates 

sedimentation upstream and erosion 
downstream of a barrage.
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Fourneyron, who developed the first commercially successful hydraulic turbine (circa
1830). Later Fourneyron built turbines for industrial purposes that achieved a speed of
2300 rev/min, developing about 50kW at an efficiency of over 80%.

The American engineer James B. Francis designed the first radial-inflow hydraulic
turbine which became widely used, gave excellent results and was highly regarded. In
its original form it was used for heads of between 10 and 100m. A simplified form of
this turbine is shown in Figure 1.1d. It will be observed that the flow path followed is
essentially from a radial direction to an axial direction.

The Pelton wheel turbine, named after its American inventor Lester A. Pelton, was
brought into use in the second half of the nineteenth century. This is an impulse turbine
in which water is piped at high pressure to a nozzle where it expands completely to
atmospheric pressure. The emerging jet impacts onto the blades (or buckets) of the
turbine producing the required torque and power output. A simplified diagram of a
Pelton wheel turbine is shown in Figure 1.1f. The head of water used originally was
between about 90m and 900m (modern versions operate up to heads of 2000m).

The increasing need for more power during the early years of the twentieth century
also led to the invention of a turbine suitable for small heads of water, i.e. 3m to 9m,
in river locations where a dam could be built. It was in 1913 that Viktor Kaplan revealed
his idea of the propeller (or Kaplan) turbine, see Figure 1.1e, which acts like a ship’s
propeller but in reverse At a later date Kaplan improved his turbine by means of swivel-
able blades which improved the efficiency of the turbine in accordance with the pre-
vailing conditions (i.e. the available flow rate and head).

Flow regimes for maximum efficiency

Although a large number of turbine types are in use, only the three mentioned above
and variants of them are considered in this book. The efficiencies of the three types 
are shown in Figure 9.1 as functions of the power specific speed, Wsp which from eqn.
(1.9), is
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FIG. 9.1. Typical design point efficiencies of Pelton, Francis and Kaplan turbines.
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(9.1)

where P is the power delivered by the shaft, HE is the effective head at turbine entry
and W is the rotational speed in rad/s.

The regimes of these turbine types are of some significance to the designer as they
indicate the most suitable choice of machine for an application once the specific speed
has been determined. In general low specific speed machines correspond to low volume
flow rates and high heads, whereas high specific speed machines correspond to high
volume flow rates and low heads. Table 9.3 summarises the normal operating ranges
for the specific speed, the effective head, the maximum power and best efficiency for
each type of turbine.

According to the experience of Sulzer Hydro Ltd., of Zurich, the application ranges
of the various types of turbines and turbine pumps (including some not mentioned here)
are plotted in Figure 9.2 on a ln Q vs ln H diagram, and reflect the present state of the
art of hydraulic turbomachinery design. Also in Figure 9.2 lines of constant power
output are conveniently shown and have been calculated as the product hrgQH, where
the efficiency h is accorded the value of 0.8 throughout the chart.

Capacity of large Francis turbines

The size and capacity of some of the recently built Francis turbines is a source of
wonder, they seem so enormous! The size and weight of the runners cause special prob-
lems getting them to the site, especially when rivers have to be crossed and the bridges
are inadequate.

The largest installation in North America (circa 1998) is at La Grande on James Bay
in eastern Canada where 22 units each rated at 333MW have a total capacity of 
7326MW. For the record, the Itaipu hydroelectric plant on the Paraná river (between
Brazil and Paraguay), dedicated in 1982, has the greatest capacity of 12,870MW in full
operation (with a planned value of 21,500MW) using 18 Francis turbines each sized
at over 700MW.

The efficiency of large Francis turbines has gradually risen over the years and now
is about 95%. A historical review of this progress has been given by Danel (1959).

TABLE 9.3. Operating ranges of hydraulic turbines

Pelton turbine Francis turbine Kaplan turbine

Specific speed (rad) 0.05–0.4 0.4–2.2 1.8–5.0
Head (m) 100–1770 20–900 6–70
Maximum power (MW) 500 800 300
Optimum efficiency, % 90 95 94
Regulation method Needle valve and Stagger angle of Stagger angle of rotor

deflector plate guide vanes blades

N.B. Values shown in the table are only a rough guide and are subject to change.
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There seems to be little prospect of much further improvement in efficiency as skin
friction, tip leakage and exit kinetic energy from the diffuser now apparently account
for the remaining losses. Raabe (1985) has given much attention to the statistics of the
world’s biggest turbines. It would appear at the present time that the largest hydrotur-
bines in the world are the three vertical shaft Francis turbines installed at Grand Coulee
III on the Columbia River, Washington, USA. Each of these leviathans has been uprated
to 800MW, with the delivery (or effective) head, H = 87m, N = 85.7 rev/min, the runner
having a diameter of D = 9.26m and weighing 450 ton. Using this data in eqn. (9.1) it
is easy to calculate that the power specific speed is 1.74 rad.

The Pelton turbine
This is the only hydraulic turbine of the impulse type now in common use. It is an

efficient machine and it is particularly suited to high head applications. The rotor con-
sists of a circular disc with a number of blades (usually called buckets) spaced around
the periphery. One or more nozzles are mounted in such a way that each nozzle directs
its jet along a tangent to the circle through the centres of the buckets. A “splitter” or
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ridge splits the oncoming jet into two equal streams so that, after flowing round the
inner surface of the bucket, the two streams depart from the bucket in a direction nearly
opposite to that of the incoming jet.

Figure 9.3 shows the runner of a Pelton turbine and Figure 9.4 shows a six-jet 
vertical axis Pelton turbine. Considering one jet impinging on a bucket, the appropri-
ate velocity diagram is shown in Figure 9.5. The jet velocity at entry is c1 and the 
blade speed is U so that the relative velocity at entry is w1 = c1 - U. At exit 
from the bucket one half of the jet stream flows as shown in the velocity diagram,
leaving with a relative velocity w2 and at an angle b 2 to the original direction of flow.
From the velocity diagram the much smaller absolute exit velocity c2 can be 
determined.

From Euler’s turbine equation, eqn. (2.12b), the specific work done by the water is

For the Pelton turbine, U1 = U2 = U, cq1 = c1 so we get

in which the value of cq2 < 0, as defined in Figure 9.5, i.e. cq2 = U + w2 cosb 2.

FIG. 9.3. Pelton turbine runner. (Courtesy Sulzer Hydro Ltd, Zurich.)
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The effect of friction on the fluid flowing inside the bucket will cause the relative
velocity at outlet to be less than the value at inlet. Writing w2 = kw1, where k < 1, then

(9.2)

An efficiency hR for the runner can be defined as the specific work done DW divided
by the incoming kinetic energy, i.e.

FIG. 9.4. Six-jet vertical shaft Pelton turbine, horizontal section. Power rating 
174.4MW, runner diameter 4.1m, speed 300rev/min, head 587m. (Courtesy Sulzer

Hydro Ltd., Zurich.)
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FIG. 9.5. The Pelton wheel showing the jet impinging onto a bucket and the relative
and absolute velocities of the flow (only one half of the emergent velocity diagram is

shown).
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(9.3)

(9.4)

where the blade speed to jet speed ratio, v = U/c1.
In order to find the optimum efficiency, differentiate eqn. (9.4) with respect to the

blade speed ratio, i.e.

Therefore, the maximum efficiency of the runner occurs when � = 0.5, i.e. U = c1/2.
Hence,

(9.5)

Figure 9.6 shows the variation of the runner efficiency with blade speed ratio for
assumed values of k = 0.8, 0.9 and 1.0 with b 2 = 165deg. In practice the value of k is
usually found to be between 0.8 and 0.9.

A simple hydroelectric scheme

The layout of a Pelton turbine hydroelectric scheme is shown in Figure 9.7. The
water is delivered from a constant level reservoir at an elevation zR (above sea level)
and flows via a pressure tunnel to the penstock head, down the penstock to the turbine
nozzles emerging onto the buckets as a high speed jet. In order to reduce the deleteri-
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FIG. 9.6. Theoretical variation of runner efficiency for a Pelton wheel with blade speed
to jet speed ratio for several values of friction factor k.



298 Fluid Mechanics, Thermodynamics of Turbomachinery

ous effects of large pressure surges, a surge tank is connected to the flow close to the
penstock head which acts so as to damp out transients. The elevation of the nozzles is
zN and the gross head, HG = zR - zN.

Controlling the speed of the Pelton turbine

The Pelton turbine is usually directly coupled to an electrical generator which must
run at synchronous speed. With large size hydroelectric schemes supplying electricity
to a national grid it is essential for both the voltage and the frequency to closely match
the grid values. To ensure that the turbine runs at constant speed despite any load
changes which may occur, the rate of flow Q is changed. A spear (or needle) valve,
Figure 9.8a, whose position is controlled by means of a servomechanism, is moved
axially within the nozzle to alter the diameter of the jet. This works well for very gradual
changes in load. However, when a sudden loss in load occurs a more rapid response is
needed. This is accomplished by temporarily deflecting the jet with a deflector plate so
that some of the water does not reach the buckets, Figure 9.8b. This acts to prevent
overspeeding and allows time for the slower acting spear valve to move to a new 
position.

It is vital to ensure that the spear valve does move slowly as a sudden reduction in
the rate of flow could result in serious damage to the system from pressure surges
(called water hammer). If the spear valve did close quickly, all the kinetic energy of
the water in the penstock would be absorbed by the elasticity of the supply pipeline
(penstock) and the water, creating very large stresses which would reach their greatest

Reservoir
Surge tank

Penstock head

Penstock

Pelton wheel

Nozzle ZN

ZR

Datum level

FIG. 9.7. Pelton turbine hydroelectric scheme.
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intensity at the turbine inlet where the pipeline is already heavily stressed. The surge
chamber, shown in Figure 9.7, has the function of absorbing and dissipating some of
the pressure and energy fluctuations created by too rapid a closure of the needle valve.

Sizing the penstock

It is shown in elementary textbooks on fluid mechanics, e.g. Shames (1992), Douglas
et al. (1995), that the loss in head with incompressible, steady, turbulent flow in pipes
of circular cross-section is given by Darcy’s equation:

(9.6)

where f is the friction factor, l is the length of the pipe, d is the pipe diameter and V is
the mass average velocity of the flow in the pipe. It is assumed, of course, that the pipe
is running full. The value of the friction factor has been determined for various condi-
tions of flow and pipe surface roughness and the results are usually presented in what
is called a Moody diagram. This diagram gives values of f as a function of pipe
Reynolds number for varying levels of relative roughness of the pipe wall.

The penstock (the pipeline bringing the water to the turbine) is long and of large
diameter and this can add significantly to the total cost of a hydroelectric power scheme.
Using Darcy’s equation it is easy to calculate a suitable pipe diameter for such a scheme
if the friction factor is known and an estimate can be made of the allowable head loss.
Logically, this head loss would be determined on the basis of the cost of materials, etc.
needed for a large diameter pipe and compared with the value of the useful energy lost
from having too small a pipe. A commonly used compromise for the loss in head in
the supply pipes is to allow Hf £ 0.1HG.

A summary of various factors on which the “economic diameter” of a pipe can be
determined is given by Raabe (1985).

FIG. 9.8. Methods of regulating the speed of a Pelton turbine: (a) with a spear (or
needle) valve; (b) with a deflector plate.
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From eqn. (9.6), substituting for the velocity, V = 4Q/(pd2), we get

(9.7)

Example 9.1. Water is supplied to a turbine at the rate Q = 2.272m3/s by a single
penstock 300m long. The allowable head loss due to friction in the pipe amounts to 20
m. Determine the diameter of the pipe if the friction factor f = 0.1.

Solution. Rearranging eqn. (9.7)

Energy losses in the Pelton turbine

Having accounted for the energy loss due to friction in the penstock, the energy losses
in the rest of the hydroelectric scheme must now be considered. The effective head,
HE, (or delivered head) at entry to the turbine is the gross head minus the friction head
loss, Hf , i.e.

and the spouting (or ideal) velocity, c0, is

The pipeline friction loss Hf is regarded as an external loss and is not included in the
losses attributed to the turbine system. The efficiency of the turbine is measured against
the ideal total head HE.

The nozzle velocity coefficient, KN, is

Values of KN are normally around 0.98 to 0.99.
Other energy losses occur in the nozzles and also because of windage and friction

of the turbine wheel. Let the loss in head in the nozzle be DHN then the head available
for conversion into power is

(9.8)

(9.9)

Equation (2.23) is an expression for the hydraulic efficiency of a turbine which, in the
present notation and using eqns. (9.3) and (9.9), becomes
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(9.10)

The efficiency hR represents only the effectiveness of converting the kinetic energy of
the jet into the mechanical energy of the runner. Further losses occur as a result of
bearing friction and “windage” losses inside the casing of the runner. In large Pelton
turbines efficiencies of around 90% may be achieved but, in smaller units, a much lower
efficiency is usually obtained.

The overall efficiency

In Chapter 2 the overall efficiency was defined as

where hm is the mechanical efficiency.
The external losses, bearing friction and windage, are chiefly responsible for the

energy deficit between the runner and the shaft. An estimate of the effect of the windage
loss can be made using the following simple flow model in which the specific energy
loss is assumed to be proportional to the square of the blade speed, i.e.

where K is a dimensionless constant of proportionality.
The overall efficiency can now be written as

(9.11)

Hence, the mechanical efficiency is

(9.12)

It can be seen that according to eqn. (9.12), as the speed ratio is reduced towards zero,
the mechanical efficiency increases and approaches unity. As there must be some
bearing friction at all speeds, however small, an additional term is needed in the loss
equation of the form Ac2

0 + kU2, where A is another dimensionless constant. The solu-
tion of this is left for the student to solve.

The variation of the overall efficiency based upon eqn. (9.11) is shown in Figure 9.9
for several values of K. It is seen that the peak efficiency

(i) is progressively reduced as the value of K is increased;
(ii) occurs at lower values of � than the optimum determined for the runner.

Thus, this evaluation of overall efficiency demonstrates the reason why experimental
results obtained of the performance of Pelton turbines always yield a peak efficiency
at a value of � < 0.5.
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Typical performance of a Pelton turbine under conditions of constant head and speed
is shown in Figure 9.10 in the form of the variation of overall efficiency against load
ratio. As a result of a change in the load the output of the turbine must then be regu-
lated by a change in the setting of the needle valve in order to keep the turbine speed
constant. The observed almost constant value of the efficiency over most of the load
range is the result of the hydraulic losses reducing in proportion to the power output.
However, as the load ratio is reduced to even lower values, the windage and bearing
friction losses, which have not diminished, assume a relatively greater importance and
the overall efficiency rapidly diminishes towards zero.

Example 9.2. A Pelton turbine is driven by two jets, generating 4.0MW at 
375 rev/min. The effective head at the nozzles is 200m of water and the nozzle veloc-
ity coefficient, KN = 0.98. The axes of the jets are tangent to a circle 1.5m in diameter.
The relative velocity of the flow across the buckets is decreased by 15% and the water
is deflected through an angle of 165deg.
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FIG. 9.9. Variation of overall efficiency of a Pelton turbine with speed ratio for several
values of windage coefficient, K.
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FIG. 9.10. Pelton turbine overall efficiency variation with load under constant head
and constant speed conditions.
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Neglecting bearing and windage losses, determine

(i) the runner efficiency;
(ii) the diameter of each jet;

(iii) the power specific speed.

Solution. (i) The blade speed is

The jet speed is

The efficiency of the runner is obtained from eqn. (9.4)

(ii) The “theoretical” power is Pth = P/hR = 4.0/0.909 = 4.40MW where Pth =
rgQHE

Each jet must have a flow area of

(iii) Substituting into eqn. (9.1), the power specific speed is

Reaction turbines
The primary features of the reaction turbine are

(i) only part of the overall pressure drop has occurred up to turbine entry, the remain-
ing pressure drop takes place in the turbine itself;

(ii) the flow completely fills all of the passages in the runner, unlike the Pelton turbine
where, for each jet, only one or two of the buckets at a time are in contact with
the water;

(iii) pivotable guide vanes are used to control and direct the flow;
(iv) a draft tube is normally added on to the turbine exit; it is considered as an inte-

gral part of the turbine.
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The pressure of the water gradually decreases as it flows through the runner and it is
the reaction from this pressure change which earns this type of turbine its appellation.

The Francis turbine
The majority of Francis turbines are arranged so that the axis is vertical (some smaller

machines can have horizontal axes). Figure 9.11 illustrates a section through a vertical
shaft Francis turbine with a runner diameter of 5m, a head of 110m and a power rating
of nearly 200MW. Water enters via a spiral casing called a volute or scroll which sur-
rounds the runner. The area of cross-section of the volute decreases along the flow path
in such a way that the flow velocity remains constant. From the volute the flow enters
a ring of stationary guide vanes which direct it onto the runner at the most appropriate
angle.

In flowing through the runner the angular momentum of the water is reduced and
work is supplied to the turbine shaft. At the design condition the absolute flow leaves
the runner axially (although a small amount of swirl may be countenanced) into the
draft tube and, finally, the flow enters the tailrace. It is essential that the exit of the
draft tube is submerged below the level of the water in the tailrace in order that the
turbine remains full of water. The draft tube also acts as a diffuser; by careful design
it can ensure maximum recovery of energy through the turbine by significantly reduc-
ing the exit kinetic energy.

FIG. 9.11. Vertical shaft Francis turbine: runner diameter 5m, head 110m, power 
200MW (courtesy Sulzer Hydro Ltd, Zurich).
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Figure 9.12 shows a section through part of a Francis turbine together with the veloc-
ity triangles at inlet to and exit from the runner at mid-blade height. At inlet to the guide
vanes the flow is in the radial/tangential plane, the absolute velocity is c1 and the
absolute flow angle is a1. Thus,

(9.13)

The flow is turned to angle a2 and velocity c2, the absolute condition of the flow at
entry to the runner. By vector subtraction the relative velocity at entry to the runner is
found, i.e. w2 = c2 - U2. The relative flow angle b 2 at inlet to the runner is defined as

(9.14)

Further inspection of the velocity diagrams in Figure 9.12 reveals that the direction of
the velocity vectors approaching both guide vanes and runner blades are tangential to
the camber lines at the leading edge of each row. This is the ideal flow condition for
“shockless” low loss entry, although an incidence of a few degrees may be beneficial
to output without a significant extra loss penalty. At vane outlet some deviation from
the blade outlet angle is to be expected (see Chapter 3). For these reasons, in all prob-
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FIG. 9.12. Sectional sketch of blading for a Francis turbine showing velocity diagrams
at runner inlet and exit.
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lems concerning the direction of flow, it is clear that it is the angle of the fluid flow
which is important and not the vane angle as is often quoted in other texts.

At outlet from the runner the flow plane is simplified as though it were actually in
the radial/tangential plane. This simplification will not affect the subsequent analysis
of the flow but it must be conceded that some component of velocity in the axial direc-
tion does exist at runner outlet.

The water leaves the runner with a relative flow angle b3 and a relative flow veloc-
ity w3. The absolute velocity at runner exit is found by vector addition, i.e. c3 = w3 +
U3. The relative flow angle, b3, at runner exit is given by

(9.15)

In this equation it is assumed that some residual swirl velocity cq3 is present (cr3 is the
radial velocity at exit from the runner). In most simple analyses of the Francis turbine
it is assumed that there is no exit swirl. Detailed investigations have shown that some
extra counter-swirl (i.e. acting so as to increase Dcq) at the runner exit does increase
the amount of work done by the fluid without a significant reduction in turbine 
efficiency.

When a Francis turbine is required to operate at part load, the power output is reduced
by swivelling the guide vanes to restrict the flow, i.e. Q is reduced, while the blade
speed is maintained constant. Figure 9.13 compares the velocity triangles at full load
and at part load from which it will be seen that the relative flow at runner entry is at a
high incidence and at runner exit the absolute flow has a large component of swirl. Both
of these flow conditions give rise to high head losses. Figure 9.14 shows the variation
of hydraulic efficiency for several types of turbine, including the Francis turbine, over
the full load range at constant speed and constant head.
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FIG. 9.13. Comparison of velocity triangles for a Francis turbine at full load and at
part load operation.
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It is of interest to note the effect that swirling flow has on the performance of the
following diffuser. The results of an extensive experimental investigation made by
McDonald et al. (1971), showed that swirling inlet flow does not affect the perform-
ance of conical diffusers which are well designed and give unseparated or only slightly
separated flow when the flow through them is entirely axial. Accordingly, part load
operation of the turbine is unlikely to give adverse diffuser performance.

Basic equations

Euler’s turbine equation, eqn. (2.12b), in the present notation, is written as

(9.16)

If the flow at runner exit is without swirl then the equation reduces to

(9.16a)

The effective head for all reaction turbines, HE, is the total head available at the turbine
inlet relative to the surface of the tailrace. At entry to the runner the energy available
is equal to the sum of the kinetic, potential and pressure energies, i.e.

(9.17)

where DHN is the loss of head due to friction in the volute and guide vanes and p2 is
the absolute static pressure at inlet to the runner.

At runner outlet the energy in the water is further reduced by the amount of specific
work DW and by friction work in the runner, gDHR and this remaining energy equals
the sum of the pressure potential and kinetic energies, i.e.
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FIG. 9.14. Variation of hydraulic efficiency for various types of turbine over a range of
loading, at constant speed and constant head.



308 Fluid Mechanics, Thermodynamics of Turbomachinery

(9.18)

where p3 is the absolute static pressure at runner exit.
By differencing eqns. (9.17) and (9.18), the specific work is obtained

(9.19)

where p02 and p03 are the absolute total pressures at runner inlet and exit.
Figure 9.15 shows the draft tube in relation to a vertical-shaft Francis turbine. The

most important dimension in this diagram is the vertical distance (z = z3) between the
exit plane of the runner and the free surface of the tailrace. The energy equation between
the exit of the runner and the tailrace can now be written as

(9.20)

where DHDT is the loss in head in the draft tube and c4 is the exit velocity.
The hydraulic efficiency is given by

(9.21)

and, if cq3 = 0, then

(9.21a)

The overall efficiency is given by h0 = hmhH. For large machines the mechanical losses
are relatively small and hm ª 100% and so h0 ª hH.

For the Francis turbine the ratio of the runner speed to the spouting velocity, � =
U/c0, is not as critical for high efficiency operation as it is for the Pelton turbine and,
in practice, it lies within a fairly wide range, i.e. 0.6 	 � 	 0.9. In most applications
of Francis turbines the turbine drives an alternator and its speed must be maintained

c3

Z

Draft tube

c4

Tailwater

FIG. 9.15. Location of draft tube in relation to vertical shaft Francis turbine.
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constant. The regulation at part load operation is achieved by varying the angle of the
guide vanes. The guide vanes are pivoted and, by means of a gearing mechanism, the
setting can be adjusted to the optimum angle. However, operation at part load causes
a whirl velocity component to be set up downstream of the runner causing a reduction
in efficiency. The strength of the vortex can be such that cavitation can occur along the
axis of the draft tube (see remarks on cavitation later in this chapter).

Example 9.3. In a vertical-shaft Francis turbine the available head at the inlet flange
of the turbine is 150m and the vertical distance between the runner and the tailrace is
2.0m. The runner tip speed is 35m/s, the meridional velocity of the water through the
runner is constant and equal to 10.5m/s, the flow leaves the runner without whirl and
the velocity at exit from the draft tube is 3.5m/s. The hydraulic energy losses estimated
for the turbine are as follows:

Determine

(i) the pressure head (relative to the tailrace) at inlet to and at exit from the runner;
(ii) the flow angles at runner inlet and at guide vane exit;

(iii) the hydraulic efficiency of the turbine.

If the flow discharged by the turbine is 20m3/s and the power specific speed of the
turbine is 0.8 (rad), determine the speed of rotation and the diameter of the runner.

Solution. From eqn. (9.20)

N.B. The head H3 is relative to the tailrace.

i.e. the pressure at runner outlet is below atmospheric pressure, a matter of some impor-
tance when we come to consider the subject of cavitation later in this chapter. From
eqn. (9.18),

From eqn. (9.18),
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The hydraulic efficiency is

From the definition of the power specific speed, eqn. (9.1),

Thus, the rotational speed is N = 432rev/min and the runner diameter is

The Kaplan turbine
This type of turbine evolved from the need to generate power from much lower pres-

sure heads than are normally employed with the Francis turbine. To satisfy large power
demands very large volume flow rates need to be accommodated in the Kaplan turbine,
i.e. the product QHE is large. The overall flow configuration is from radial to axial.
Figure 9.16a is a part sectional view of a Kaplan turbine in which the flow enters from
a volute into the inlet guide vanes which impart a degree of swirl to the flow deter-
mined by the needs of the runner. The flow leaving the guide vanes is forced by the
shape of the passage into an axial direction and the swirl becomes essentially a free
vortex, i.e.

The vanes of the runner are similar to those of an axial-flow turbine rotor but designed
with a twist suitable for the free-vortex flow at entry and an axial flow at outlet. A
picture of a Kaplan (or propeller) turbine runner is shown in Figure 9.16b. Because of
the very high torque that must be transmitted and the large length of the blades, strength
considerations impose the need for large blade chords. As a result, pitch–chord ratios
of 1.0 to 1.5 are commonly used by manufacturers and, consequently, the number of
blades is small, usually 4, 5 or 6. The Kaplan turbine incorporates one essential feature
not found in other turbine rotors and that is the setting of the stagger angle can be 
controlled. At part load operation the setting angle of the runner vanes is adjusted 
automatically by a servomechanism to maintain optimum efficiency conditions. This
adjustment requires a complementary adjustment of the inlet guide vane stagger angle
in order to maintain an absolute axial flow at exit from the runner.

Basic equations

Most of the equations presented for the Francis turbine also apply to the Kaplan (or
propeller) turbine, apart from the treatment of the runner. Figure 9.17 shows the veloc-
ity triangles and part section of a Kaplan turbine drawn for the mid-blade height. At
exit from the runner the flow is shown leaving the runner without a whirl velocity, i.e.
cq3 = 0 and constant axial velocity. The theory of free-vortex flows was expounded in
Chapter 6 and the main results as they apply to an incompressible fluid are given here.
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The runner blades will have a fairly high degree of twist, the amount depending upon
the strength of the circulation function K and the magnitude of the axial velocity. Just
upstream of the runner the flow is assumed to be a free-vortex and the velocity com-
ponents are accordingly

FIG. 9.16. (a) Part section of a Kaplan turbine in situ; (b) Kaplan turbine runner.
(Courtesy Sulzer Hydro Ltd, Zurich.)

(a)

(b)
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The relations for the flow angles are

(9.22a)

(9.22b)

Example 9.4. A small-scale Kaplan turbine has a power output of 8MW, an avail-
able head at turbine entry of 13.4m and a rotational speed of 200 rev/min. The inlet
guide vanes have a length of 1.6m and the diameter at the trailing edge surface is 
3.1m. The runner diameter is 2.9m and the hub–tip ratio is 0.4.

Assuming the hydraulic efficiency is 92% and the runner design is “free-vortex”,
determine

(i) the radial and tangential components of velocity at exit from the guide vanes;
(ii) the component of axial velocity at the runner;

(iii) the absolute and relative flow angles upstream and downstream of the runner at
the hub, mid-radius and tip.

Solution. As P = hHrgQHE, then the volume flow rate is

As the specific work done is DW = U2cq2 and hH = DW/(gHE), then at the tip

1
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flow
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W2 c2
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c3 = cx

FIG. 9.17. Section of a Kaplan turbine and velocity diagrams at inlet to and exit from
the runner.
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where the blade tip speed is U2 = WD2/2 = (200 ¥ p/30) ¥ 2.9/2 = 30.37m/s

Values a 2, b 2 and b 3 shown in Table 9.4 have been derived from the following 
relations:

Finally, Figure 9.18 illustrates the variation of the flow angles, from which the large
amount of blade twist mentioned earlier can be inferred.

Effect of size on turbomachine efficiency
Despite careful attention to detail at the design stage and during manufacture it is a

fact that small turbomachines always have lower efficiencies than larger geometrically
similar machines. The primary reason for this is that it is not possible to establish perfect
dynamical similarity between turbomachines of different size. In order to obtain this
condition, each of the the dimensionless terms in eqn. (1.2) would need to be the same
for all sizes of a machine.

To illustrate this consider a family of turbomachines where the loading term, y =
gH/N2D2 is the same and the Reynolds number, Re = ND2/n is the same for every size
of machine, then

TABLE 9.4. Calculated values of flow angles for 
Example 9.4

Parameter Ratio r/rt

0.4 0.7 1.0

cq 2 m/s 9.955 5.687 3.982
tan a2 0.835 0.4772 0.334
a2 (deg) 39.86 25.51 18.47
U/cx2 1.019 1.7832 2.547
b 2 (deg) 10.43 52.56 65.69
b 3 (deg) 45.54 60.72 68.57
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must be the same for the whole family. Thus, for a given fluid (� is a constant), a reduc-
tion in size D must be followed by an increase in the head H. A turbine model of 1/8
the size of a prototype would need to be tested with a head 64 times that required by
the prototype! Fortunately, the effect on the model efficiency caused by changing the
Reynolds number is not large. In practice, models are normally tested at conveniently
low heads and an empirical correction is applied to the efficiency.

With model testing other factors affect the results. Exact geometric similarity cannot
be achieved for the following reasons:

(i) the blades in the model will probably be relatively thicker than in the prototype;
(ii) the relative surface roughness for the model blades will be greater;

(iii) leakage losses around the blade tips of the model will be relatively greater as a
result of increased relative tip clearances.

Various simple corrections have been devised (see Addison 1964) to allow for the
effects of size (or scale) on the efficiency. One of the simplest and best known is that
due to Moody and Zowski (1969), also reported by Addison (1964) and Massey (1979),
which as applied to the efficiency of reaction turbines is

(9.23)

where the subscripts p and m refer to prototype and model, and the index n is in the
range 0.2 to 0.25. From comparison of field tests of large units with model tests, Moody
and Zowski concluded that the best value for n was approximately 0.2 rather than 0.25
and for general application this is the value used. However, Addison (1964) reported
tests done on a full-scale Francis turbine and a model made to a scale of 1 to 4.54 which
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FIG. 9.18. Calculated variation of flow angles for Kaplan turbine of Example 9.4.
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gave measured values of the maximum efficiencies of 0.85 and 0.90 for the model and
full-scale turbines, respectively, which agreed very well with the ratio computed with
n = 0.25 in the Moody formula!

Example 9.5. A model of a Francis turbine is built to a scale of 1/5 of full size and
when tested it developed a power output of 3kW under a head of 1.8m of water, at a
rotational speed of 360 rev/min and a flow rate of 0.215m3/s. Estimate the speed, flow
rate and power of the full-scale turbine when working under dynamically similar con-
ditions with a head of 60m of water.

By making a suitable correction for scale effects, determine the efficiency and the
power of the full-size turbine. Use Moody’s formula and assume n = 0.25.

Solution. From the group y = gH/(ND)2 we get

From the group f = Q/(ND3) we get

Lastly, from the group P̂ = P/(rN3D5) we get

This result has still to be corrected to allow for scale effects. First we must calculate
the efficiency of the model turbine. The efficiency is found from

Using Moody’s formula the efficiency of the prototype is determined:

hence

The corresponding power is found by an adjustment of the original power obtained
under dynamically similar conditions, i.e.

Cavitation
A description of the phenomenon of cavitation, mainly with regard to pumps, was

given in Chapter 1. In hydraulic turbines, where reliability, long life and efficiency are
all so very important, the effects of cavitation must be considered. Two types of cavi-
tation may be in evidence,

(i) on the suction surfaces of the runner blades at outlet which can cause severe blade
erosion; and

(ii) a twisting “rope-type” cavity that appears in the draft tube at off-design operating
conditions.
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Cavitation in hydraulic turbines can occur on the suction surfaces of the runner blades
where the dynamic action of the blades acting on the fluid creates low pressure zones
in a region where the static pressure is already low. Cavitation will commence when
the local static pressure is less than the vapour pressure of the water, i.e. where the head
is low, the velocity is high and the elevation, z, of the turbine is set too high above the
tailrace. For a turbine with a horizontal shaft the lowest pressure will be located in the
upper part of the runner, which could be of major significance in large machines.
Fortunately, the runners of large machines are, in general, made so that their shafts are
orientated vertically, lessening the problem of cavitation occurrence.

The cavitation performance of hydraulic turbines can be correlated with the Thoma
coefficient, s, defined as

(9.24)

where HS is the net positive suction head (NPSH), the amount of head needed to avoid
cavitation, the difference in elevation, z, is defined in Figure 9.15 and pv is the vapour
pressure of the water. The Thoma coefficient was, strictly, originally defined in con-
nection with cavitation in turbines and its use in pumps is not appropriate (see Yedidiah
1981). It is to be shown that s represents the fraction of the available head HE which
is unavailable for the production of work. A large value of s means that a smaller part
of the available head can be utilised. In a pump, incidentally, there is no direct con-
nection between the developed head and its suction capabilities, provided that cavita-
tion does not occur, which is why the use of the Thoma coefficient is not appropriate
for pumps.

From the energy equation, eqn. (9.20), this can be rewritten as

(9.25)

so that when p3 = pv, then HS is equal to the right-hand side of eqn. (9.24).
Figure 9.19 shows a widely used correlation of the Thoma coefficient plotted against

specific speed for Francis and Kaplan turbines, approximately defining the boundary
between no cavitation and severe cavitation. In fact, there exists a wide range of criti-
cal values of s for each value of specific speed and type of turbine due to the individ-
ual cavitation characteristics of the various runner designs. The curves drawn are meant
to assist preliminary selection procedures. An alternative method for avoiding cavita-
tion is to perform tests on a model of a particular turbine in which the value of p3 is
reduced until cavitation occurs or a marked decrease in efficiency becomes apparent.
This performance reduction would correspond to the production of large-scale cavita-
tion bubbles. The pressure at which cavitation erosion occurs will actually be at some
higher value than that at which the performance reduction starts.

For the centre-line cavitation that appears downstream of the runner at off-design
operating conditions, oscillations of the cavity can cause severe vibration of the draft
tube. Young (1989) reported some results of a “corkscrew” cavity rotating at 4Hz. Air
injected into the flow both stabilizes the flow and cushions the vibration.

Example 9.6. Using the data in Example 9.3 and given that the atmospheric pres-
sure is 1.013 bar and the water is at 25°C, determine the NPSH for the turbine. Hence,
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using Thoma’s coefficient and the data shown in Figure 9.19, determine whether 
cavitation is likely to occur. Also using the data of Wislicenus verify the result.

Solution. From tables of fluid properties, e.g. Rogers and Mayhew (1995), or using
the data of Figure 9.20, the vapour pressure for water corresponding to a temperature
of 25°C is 0.03166 bar. From the definition of NPSH, eqn. (9.24), we obtain

Thus, Thoma’s coefficient is, s = HS /HE = 8.003/150 = 0.05336.
At the value of WSP = 0.8 given as data, the value of the critical Thoma coefficient

sc corresponding to this is 0.09 from Figure 9.19. From the fact that s < sc, then the
turbine will cavitate.

From the definition of the suction specific speed
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According to eqn. (1.12b), when WSS exceeds 4.0 (rad) then cavitation can occur, giving
further confirmation of the above conclusion.

Connection between Thoma’s coefficient, suction specific speed and 
specific speed

The definitions of suction specific speed and specific speed are

Combining and using eqn. (9.24), we get

(9.26)

Exercise. Verify the value of Thoma’s coefficient in the earlier example using 
the values of power specific speed, efficiency and suction specific speed given or
derived.

We use as data WSS = 7.613, WSP = 0.8 and hH = 0.896 so that, from eqn. (1.9c),
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Avoiding cavitation

By rearranging eqn. (9.24) and putting s = sc, a critical value of z can be derived on
the boundary curve between cavitation and no cavitation. Thus,

This means that the turbine would need to be submerged at a depth of 3.5m or more
below the surface of the tailwater and, for a Francis turbine, would lead to problems
with regard to construction and maintenance. Equation (9.24) shows that the greater
the available head HE at which a turbine operates, the lower it must be located relative
to the surface of the tailrace.

Application of CFD to the design of hydraulic turbines
With such a long history, the design of hydraulic turbines still depends very much

on the experience gained from earlier designs. According to Drtina and Sallaberger
(1999), the use of CFD for predicting the flow in these machines has brought further
substantial improvements in their hydraulic design, and resulted in a more complete
understanding of the flow processes and their influence on turbine performance. Details
of flow separation, loss sources and loss distributions in components both at design and
off-design as well as detecting low pressure levels associated with the risk of cavita-
tion are now amenable to analysis with the aid of CFD.

Drtina and Sallaberger presented two examples where the application of CFD
resulted in a better understanding of complex flow phenomena. Generally, this 
better knowledge of the flow has resulted either in design improvements to existing
components or to the replacement of components by a completely new design.

Sonoluminescence

The collapse of vapour cavities generates both noise and flashes of light (called 
sonoluminescence). Young (1989) has given an extended and interesting review of
experiments on sonoluminescence from hydrodynamic cavitation and its causes. The
phenomenon has also been reported by Pearsall (1974) who considered that the col-
lapse of the cavity was so rapid that very high pressures and temperatures were created.
Temperatures as high as 10,000K have been suggested. Shock waves with pressure dif-
ferences of 4000atm have been demonstrated in the liquid following the collapse of a
cavity. The effect of the thermal and pressure shocks on any material in close proxim-
ity causes mechanical failure, i.e. erosion damage.

Although the subject of SL involves some knowledge of theoretical physics 
and is admittedly well outside the usual range of fluid mechanics, the reader might 
well be inspired to follow what is proving to be an elusive and complicated 
enquiry into a region of “unknown territory”. An interesting paper by Putterman 
and Weninger (2000) reviews many recent attempts to rationalise this pheno-
menon, listing its occurrence in a wide variety of situations. One description of SL is,
“the transduction of sound into light, a phenomenon that pushes fluid mechanics beyond
its limit”.
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Light has been reported in large energy distributions in field installations. An example
again quoted by Young is that of the easily visible light observed at night in the tail-
race at Boulder Dam, USA. This occurs when sudden changes of load necessitate the
release of large quantities of high-pressure water into an energy-dissipating structure.
Under these conditions the water cavitates severely. In a further example, Young men-
tions the light (observed at night) from the tailrace of the hydroelectric power station
at Erochty, Scotland. The luminescence appeared for up to ten seconds shortly after the
relief valve was opened and was seen as a blue shimmering light stretching over an
area of the water surface for several square metres.
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Problems
1. A generator is driven by a small, single-jet Pelton turbine designed to have a power spe-

cific speed WSP = 0.20. The effective head at nozzle inlet is 120m and the nozzle velocity coef-
ficient is 0.985. The runner rotates at 880 rev/min, the turbine overall efficiency is 88% and the
mechanical efficiency is 96%.

If the blade speed to jet speed ratio, � = 0.47, determine

(i) the shaft power output of the turbine;
(ii) the volume flow rate;

(iii) the ratio of the wheel diameter to jet diameter.

2. (a) Water is to be supplied to the Pelton wheel of a hydroelectric power plant by a pipe of
uniform diameter, 400m long, from a reservoir whose surface is 200m vertically above the
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nozzles. The required volume flow of water to the Pelton wheel is 30m3/s. If the pipe skin fric-
tion loss is not to exceed 10% of the available head and f = 0.0075, determine the minimum pipe
diameter.

(b) You are required to select a suitable pipe diameter from the available range of stock sizes
to satisfy the criteria given. The range of diameters (m) available are 1.6, 1.8, 2.0, 2.2, 2.4, 2.6,
2.8. For the diameter you have selected, determine

(i) the friction head loss in the pipe;
(ii) the nozzle exit velocity assuming no friction losses occur in the nozzle and the water leaves

the nozzle at atmospheric pressure;
(iii) the total power developed by the turbine assuming that its efficiency is 75% based upon the

energy available at turbine inlet.

3. A multi-jet Pelton turbine with a wheel 1.47m diameter, operates under an effective head
of 200m at nozzle inlet and uses 4m3/s of water. Tests have proved that the wheel efficiency is
88% and the velocity coefficient of each nozzle is 0.99.

Assuming that the turbine operates at a blade speed to jet speed ratio of 0.47, determine

(i) the wheel rotational speed;
(ii) the power output and the power specific speed;

(iii) the bucket friction coefficient given that the relative flow is deflected 165°;
(iv) the required number of nozzles if the ratio of the jet diameter to mean diameter of the wheel

is limited to a maximum value of 0.113.

4. A four-jet Pelton turbine is supplied by a reservoir whose surface is at an elevation of 
500m above the nozzles of the turbine. The water flows through a single pipe 600m long, 0.75
m diameter, with a friction coefficient f = 0.0075. Each nozzle provides a jet 75mm diameter
and the nozzle velocity coefficient KN = 0.98. The jets impinge on the buckets of the wheel at a
radius of 0.65m and are deflected (relative to the wheel) through an angle of 160deg. Fluid fric-
tion within the buckets reduces the relative velocity by 15%. The blade speed to jet speed ratio
n = 0.48 and the mechanical efficiency of the turbine is 98%.

Calculate, using an iterative process, the loss of head in the pipeline and, hence, determine
for the turbine

(i) the speed of rotation;
(ii) the overall efficiency (based on the effective head);

(iii) the power output;
(iv) the percentage of the energy available at turbine inlet which is lost as kinetic energy at

turbine exit.

5. A Francis turbine operates at its maximum efficiency point at h0 = 0.94, corresponding to
a power specific speed of 0.9 rad. The effective head across the turbine is 160m and the speed
required for electrical generation is 750 rev/min. The runner tip speed is 0.7 times the spouting
velocity, the absolute flow angle at runner entry is 72deg from the radial direction and the
absolute flow at runner exit is without swirl.

Assuming there are no losses in the guide vanes and the mechanical efficiency is 100%, 
determine

(i) the turbine power and the volume flow rate;
(ii) the runner diameter;

(iii) the magnitude of the tangential component of the absolute velocity at runner inlet;
(iv) the axial length of the runner vanes at inlet.

6. The power specific speed of a 4MW Francis turbine is 0.8, and the hydraulic efficiency
can be assumed to be 90%. The head of water supplied to the turbine is 100m. The runner vanes
are radial at inlet and their internal diameter is three quarters of the external diameter. The 
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meridional velocities at runner inlet and outlet are equal to 25 and 30%, respectively, of the spout-
ing velocity.

Determine

(i) the rotational speed and diameter of the runner;
(ii) the flow angles at outlet from the guide vanes and at runner exit;

(iii) the widths of the runner at inlet and at exit.

Blade thickness effects can be neglected.

7. (a) Review, briefly, the phenomenon of cavitation in hydraulic turbines and indicate the
places where it is likely to occur. Describe the possible effects it can have upon turbine opera-
tion and the turbine’s structural integrity. What strategies can be adopted to alleviate the onset
of cavitation?

(b) A Francis turbine is to be designed to produce 27MW at a shaft speed of 94 rev/min under
an effective head of 27.8m. Assuming that the optimum hydraulic efficiency is 92% and the
runner tip speed to jet speed ratio is 0.69, determine

(i) the power specific speed;
(ii) the volume flow rate;

(iii) the impeller diameter and blade tip speed.

(c) A 1/10 scale model is to be constructed in order to verify the performance targets of the
prototype turbine and to determine its cavitation limits. The head of water available for the model
tests is 5.0m. When tested under dynamically similar conditions as the prototype, the net posi-
tive suction head HS of the model is 1.35m.

Determine for the model

(i) the speed and the volume flow rate;
(ii) the power output, corrected using Moody’s equation to allow for scale effects (assume a

value for n = 0.2);
(iii) the suction specific speed WSS.

(d) The prototype turbine operates in water at 30°C when the barometric pressure is 95kPa.
Determine the necessary depth of submergence of that part of the turbine mostly likely to be
prone to cavitation.

8. The preliminary design of a turbine for a new hydro electric power scheme has under con-
sideration a vertical-shaft Francis turbine with a hydraulic power output of 200MW under an
effective head of 110m. For this particular design a specific speed, Ws = 0.9 (rad), is selected for
optimum efficiency. At runner inlet the ratio of the absolute velocity to the spouting velocity is
0.77, the absolute flow angle is 68deg and the ratio of the blade speed to the spouting velocity
is 0.6583. At runner outlet the absolute flow is to be without swirl.

Determine

(i) the hydraulic efficiency of the rotor;
(ii) the rotational speed and diameter of the rotor;

(iii) the volume flow rate of water;
(iv) the axial length of the vanes at inlet.

9. A Kaplan turbine designed with a shape factor (power specific speed) of 3.0 (rad), a runner
tip diameter of 4.4m and a hub diameter of 2.0m, operates with a net head of 20m and a shaft
speed of 150 rev/min. The absolute flow at runner exit is axial. Assuming that the hydraulic effi-
ciency is 90% and the mechanical efficiency is 99%, determine

(i) the volume flow rate and shaft power output;
(ii) the relative flow angles at the runner inlet and outlet at the hub, the mean radius and at the

tip.



CHAPTER 10

Wind Turbines
Take care your worship, those things over there are not giants but windmills.
(M. CERVANTES, Don Quixote, Pt. 1, Ch. 8)

Introduction
The last two decades have witnessed a powerful and significant growth of electric-

ity generating wind energy installations in many parts of the world, particularly in
Europe. New machines have been appearing in windy areas on hillsides, along moun-
tain passes and, increasingly, in coastal waters. Figure 10.1, taken from data provided
by Ackermann and Söder (2002), gives a general indication of the development of
installed wind power capacity between the years 1995 and 2001. It is clear from this
graph that the trend of rapid growth in installed capacity is continuing apace. According
to figures released by the American Wind Energy Association and the European Wind
Energy Association (March 2004), the global wind power installed in 2003 was 
over 8000MW bringing the total global wind power generating capacity to nearly
40,000MW. Annual growth rates in Europe over the last five years have been over 
35%. A survey published in March 2004 by the German Wind Energy Institute esti-
mated that the global market for wind power could reach 150,000MW by 2012.

Paralleling this growth, the number of publications concerning wind turbines is now
very large and growing rapidly. These deal with the many aspects of the subject from
its historical development, methods of construction, aerodynamic theory, design, struc-
tural dynamics, electrical generation and control as well as the all-important economic
factors. Review papers such as those by Ackermann and Söder (2002) and Snel (1998,
2003) provide useful guidance to the many books and papers covering specialised
aspects of wind energy, power generation and wind turbines. An interesting paper pre-
sented by Millborrow (2002) tracks the technical development of wind energy in recent
years, examines its position in the economics of electricity generation and discusses
opportunities and threats faced by the technology in deregulated electricity markets.

The proper design and size of a wind turbine will depend crucially upon having a
favourable wind, i.e. of sufficient strength and duration. For all the locations under 
consideration as sites for wind turbines, extended anemometric surveys (lasting over at
least a year) are needed to determine the nature of the wind speed distribution over
time. From these data, estimates of power output for a range of turbine designs and
sizes can be made. Wind turbine rotors have been known to suffer damage or even
destruction from excessive wind speeds and obviously this aspect requires very careful
consideration of the worst-case wind conditions so the problem may be avoided.
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An important issue concerning the installation of wind power plants involves the 
environmental impact they make. Walker and Jenkins (1997) have outlined the most
significant benefits for installing wind turbines as well as the reasons put forward to
counter their installation. It is clear that the benefits include the reduction in the use of
fossil fuels, leading to a reduction in the emission of pollutants (the most important of
these being the oxides of carbon, sulphur and nitrogen). Any emissions caused by the
manufacture of the wind turbine plant itself are offset after a few months emission-free
operation. Similarly, the energy expended in the manufacture of a wind turbine, accord-
ing to the World Energy Council (1994), is paid back after about a year’s normal 
operation.

It may be of interest to mention a little about how the modern wind turbine evolved.
Of course the extraction of mechanical power from the wind is an ancient practice
dating back at least 3000 years. Beginning with sailing ships the technical insight gained
from them was extended to the early windmills for the grinding of corn etc. Windmills
are believed to have originated in Persia in the seventh century and gradually spread
to Europe in the twelfth century. The design was gradually improved, especially in
England during the eighteenth century where millwrights developed remarkably effec-
tive self-acting control mechanisms. A brick built tower windmill, Figure 10.2, of this
type still exists at Bidston Hill on the Wirral, UK, and was used to grind corn into flour
for 75 years up until 1875. It is now a popular historical attraction.

The wind-pump was first developed in Holland for drainage purposes while in the
USA the deep-well pump was evolved for raising water for stock watering. Most wind-
mills employ a rotor with a near horizontal axis, the sails were originally of canvas, a
type still in use today in Crete. The English windmill employed wooden sails with
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pivoted slats for control. The US wind-pump made use of a large number of sheet-metal
sails (Lynette and Gipe 1998). The remarkable revival of interest in modern wind
powered machines appears to have started in the 1970s because of the so-called fuel
crisis. A most interesting brief history of wind turbine design is given by Eggleston and
Stoddard (1987). Their focus of attention was the use of wind power for generating
electrical energy rather than mechanical energy. A rather more detailed history of the
engineering development of windmills from the earliest times leading to the introduc-
tion of the first wind turbines is given by Shepherd (1998).

Types of wind turbine
Wind turbines fall into two main categories, those that depend upon aerodynamic

drag to drive them (i.e. old style windmills) and those that depend upon aerodynamic
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FIG. 10.2. Tower Windmill, Bidston, Wirral, UK. circa 1875.



lift. Drag machines such as those developed in ancient times by the Persians were of
rather low efficiency compared with modern turbines (employing lift forces) and are
not considered any further in this chapter.

The design of the modern wind turbine is based upon aerodynamic principles, which
are elaborated later in this chapter. The rotor blades are designed to interact with the
oncoming airflow so that an aerodynamic lift force is developed. A drag force is also
developed but, in the normal range of pre-stall operation, this will amount to only about
1 or 2% of the lift force. The lift force, and the consequent positive torque produced,
drives the turbine thereby developing output power.

In this chapter, the focus of attention is necessarily restricted to the aerodynamic
analysis of the horizontal axis wind turbine (HAWT) although some mention is given
of the vertical axis wind turbine (VAWT). The VAWT, also referred to as the Darrieus
turbine, after its French inventor in the 1920s, uses vertical and often slightly curved
symmetrical aerofoils. Figure 10.3a shows a general view of the very large 4.2MW
vertical axis Darrieus wind turbine called the Eolé VAWT installed at Cap-Chat,
Quebec, Canada, having an effective diameter of 64m and a blade height of 96m.

Figure 10.3b, from Richards (1987), is a sketch of the major components of this aptly
named eggbeater wind turbine. Guy cables (not shown) are required to maintain the
turbine erect. This type of machine has one distinct advantage: it can operate con-
sistently without regard to wind direction. However, it does have a number of major
disadvantages:

(i) wind speeds are low close to the ground so that the lower part of the rotor is rather
less productive than the upper part,

(ii) high fluctuations in torque occur with every revolution,
(iii) negligible self-start capability,
(iv) limited capacity for speed regulation in winds of high speed.

According to Ackermann and Söder (2002), VAWTs were developed and produced
commercially in the 1970s until the 1980s. Since the end of the 1980s research and
development on VAWTs has virtually ceased in most countries, apart from Canada (see
Gasch 2002, Walker and Jenkins 1997, Divone 1998).

Large HAWTs

The HAWT type is currently dominant in all large-scale applications for extracting
power from the wind and seems likely to remain so. The very large HAWT, Figure
10.4a, operating at Barrax, Spain, is 104m in diameter and can generate 3.6MW.
Basically, a HAWT comprises a nacelle mounted on top of a high tower, containing a
generator and, usually, a gearbox to which the rotor is attached. Increasing numbers of
wind turbines do not have gearboxes but use a direct drive. A powered yaw system is
used to turn the turbine so that it faces into the wind. Sensors monitor the wind direc-
tion and the nacelle is turned according to some integrated average wind direction. The
number of rotor blades employed depends on the purpose of the wind turbine. As a
rule, two or three bladed rotors are used for the generation of electricity. Wind turbines
with only two or three blades have a high tip–speed ratio but only a low starting torque
and may even require assistance at startup to bring it into the useful power producing
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FIG. 10.3. (a) The 4MW Eolè VAWT installed at Cap-Chat, Quebec; (b) sketch of
VAWT Eolé showing the major components, including the direct-drive generator.

(Courtesy AWEA.)
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range of operation. Commercial turbines range in capacity from a few hundred kilo-
watts to more than 3MW. The crucial parameter is the diameter of the rotor blades, the
longer the blades, the greater is the “swept” area and the greater the possible power
output. Rotor diameters now range to over 100m. The trend is towards larger machines
as they can produce electricity at a lower price. Most wind turbines of European origin
are made to operate upwind of the tower, i.e. they face into the wind with the nacelle
and tower downstream. However, there are also wind turbines of downwind design,
where the wind passes the tower before reaching the rotor blades. Advantages of the
upwind design are that there is little or no tower “shadow” effect and lower noise level
than the downwind design.
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FIG. 10.4. (a) First General Electric baseline HAWT, 3.6MW, 104m 
diameter, operating at Barrax, Spain, since 2002. (Courtesy U.S. Department 

of Energy.) 



Small HAWTs

Small wind turbines with a horizontal axis were developed in the nineteenth century
for mechanical pumping of water, e.g. the American farm pump. The rotors had 20 or
more blades, a low tip–speed ratio but a high starting torque. With increasing wind
speed pumping would then start automatically. According to Baker (1985), the out-
growth of the utility grid caused the decline of the wind-driven pump in the 1930s.
However, there has been a worldwide revival of interest in small HAWTs of modern
design for providing electricity in remote homes and isolated communities that are “off-
grid”. The power output of such a wind-powered unit would range from about 1 to 
50kW. Figure 10.4b shows the Bergey Excel-S, which is a three-blade upwind 
turbine rated at 10kW at a wind speed of 13m/s. This is currently America’s most
popular residential and small business wind turbine.

Growth of wind power capacity and cost
The British Wind Energy Association (BWEA) stated that improvements in wind

energy technology mean that the trends which have led to the dramatic fall in the cost of
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FIG. 10.4. (b) The Bergey Excel-S, three-bladed, 7m diameter wind turbine, rated at
10kW at wind speed of 13m/s. (With permission of Bergey Windpower Company.)



electricity produced from wind energy are set to continue. They estimate that 22,000MW
of wind energy capacity, in the form of 40,000 wind turbines, will be installed in the next
ten years. However, in the trade journal Wind Power Monthly (March 2004), around 
8200MW of new wind power capacity was installed in 2003, 21% more than the previ-
ous year. This was enough to maintain the annual growth rate at almost the same level
of over 26%. The European growth rate in 2003 was similar to the global figure of around
24% while in the USA (up to the end of 2003) a surge of economic activity pushed 
its growth rate up to 35%. In the 1990s the cost of manufacturing wind turbines declined
by 20% for each doubling of the number of wind turbines manufactured. Currently, 
the production of large-scale, grid-connected wind turbines doubles about every three
years. A general survey of the economics of wind turbines and the forecasting of 
cost reduction of electricity production is given by Ackermann and Söder (2002).

Outline of the theory
In the following pages the aerodynamic theory of the HAWT is gradually developed,

starting with the simple one-dimensional momentum analysis of the actuator disc and
followed by the more detailed analysis of the blade element theory. The flow state just
upstream of the rotor plane forms the so-called inflow condition for the rotor blades
and from which the aerodynamic forces acting on the blades can be determined. The
well-known blade element momentum (BEM) method is outlined and used extensively.
A number of worked examples are included at each stage of development to illustrate
the application of the theory. Detailed calculations using the BEM method were made
to show the influence of various factors such as the tip–speed ratio and blade number
on performance. Further development of the theory includes the application of Prandtl’s
tip loss correction factor that corrects for a finite number of blades. Glauert’s optimi-
sation analysis is developed and used to determine the ideal blade shape for a given lift
coefficient and to show how optimum rotor power coefficient is influenced by the choice
of tip–speed ratio.

Actuator disc approach
Introduction

The concept of the actuator disc was used in Chapter 6 as a method of determining
the three-dimensional flows in compressor and turbine blade rows. Betz (1926) in his
seminal work on the flow through windmill blades used a much simpler version of the
actuator disc. As a start to understanding the power production process of the turbine
consider the flow model shown in Figure 10.5 where the rotor of the HAWT is replaced
by an actuator disc. It is necessary to make a number of simplifying assumptions con-
cerning the flow but, fortunately, the analysis yields useful approximate results.

Theory of the actuator disc

The assumptions made are as follows:

(i) steady uniform flow upstream of the disc;
(ii) uniform and steady velocity at the disc;
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(iii) no flow rotation produced by the disc;
(iv) the flow passing through the disc is contained both upstream and downstream by

the boundary stream tube;
(v) the flow is incompressible.

Because the actuator disc offers a resistance to the flow the velocity of the air is
reduced as it approaches the disc and there will be a corresponding increase in pres-
sure. The flow crossing through the disc experiences a sudden drop in pressure below
the ambient pressure. This discontinuity in pressure at the disc characterises the actu-
ator. Downstream of the disc there is a gradual recovery of the pressure to the ambient
value.

We define the axial velocities of the flow far upstream (x Æ -•), at the disc (x = 0)
and far downstream (x Æ •) as cx1, cx2 and cx3 respectively. From the continuity equa-
tion the mass flow is

(10.1)

where

r = air density,

A2 = area of disc.

The axial force acting on the disc is

(10.2)

And the corresponding power extracted by the turbine or actuator disc is

(10.3)

The rate of energy loss by the wind must then be

(10.4)

Assuming no other energy losses, we can equate the power lost by the wind to the
power gained by the turbine rotor or actuator

P m c cW x x= -( )˙ 1
2

3
2 2

P Xc m c c cx x x x= = -( )2 1 3 2˙

X m c cx x= -( )˙ 1 3

ṁ c Ax= r 2 2
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(10.5)

This is the proof developed by Betz (1926) to show that the velocity of the flow in the
plane of the actuator disc is the mean of the velocities far upstream and far downstream
of the disc. We should emphasise again that wake mixing, which must physically occur
far downstream of the disc, has so far been ignored.

An alternative proof of Betz’s result

The air passing across the disc undergoes an overall change in velocity (cx1 - cx3)
and a corresponding rate of change of momentum equal to the mass flow rate multi-
plied by this velocity change. The force causing this momentum change is equal to the
difference in pressure across the disc times the area of the disc. Thus,

(10.6)

The pressure difference Dp is obtained by separate applications of Bernoulli’s equation
to the two flow regimes of the stream tube.

Referring to region 1–2 in Figure 10.5,

and for region 2–3,

By taking the difference of the two equations we obtain

(10.7)

Equating eqns. (10.6) and (10.7) we arrive at the result previously found,

(10.5)

The axial flow induction factor, a–

By combining eqns. (10.1) and (10.3), then

and from eqn. (10.5) we can obtain

hence,

and so,
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It is convenient to define an axial flow induction factor, a– (invariant with radius), for
the actuator disc,

(10.9)

Hence,

(10.10)

The power coefficient

For the unperturbed wind (i.e. velocity is cx1) with the same flow area as the disc (A2

= pR2), the kinetic power available in the wind is

A power coefficient Cp is defined as

(10.11)

The maximum value of Cp is found by differentiating Cp with respect to a–, i.e. finally

which gives two roots, a– = 1/3 and 1.0. Using the first value, the maximum value of
the power coefficient is

(10.12)

This value of Cp is often referred to as the Betz limit, referring to the maximum 
possible power coefficient of the turbine (with the prescribed flow conditions).

A useful measure of wind turbine performance is the ratio of the power coefficient
CP to the maximum power coefficient CPmax. This ratio, which may be called the rela-
tive maximum power coefficient, is

(10.12a)

The axial force coefficient

The axial force coefficient is defined as

(10.13)

By differentiating this expression with respect to a– we can show that CX has a maximum
value of unity at a– = 0.5. Figure 10.6 shows the variation of both Cp and CX as func-
tions of the axial induction factor, a–.

Example 10.1. Determine the static pressure changes that take place

(i) across the actuator disc;
(ii) up to the disc from far upstream;

(iii) from the disc to far downstream.
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The pressure immediately before the disc is p2+. The pressure immediately after the disc
is p2-.

Solution. The force acting on the disc is X = A2(p2+ - p2-) = A2Dp. The power 
developed by the disc is P = Xcx2 = A2Dpcx2. Also, we have P = 1–

2 m(c2
x1 - c2

x3).
Equating and simplifying, we get

This is the pressure change across the disc divided by the upstream dynamic pressure.
For the flow field from far upstream of the disc,

For the flow field from the disc to far downstream,

and, noting that p3 = p1, we finally obtain

Figure 10.7 indicates approximately the way the pressure varies before and after the
actuator disc.
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Example 10.2. Determine the radii of the unmixed slipstream at the disc (R2) and
far downstream of the disc (R3) compared with the radius far upstream (R1).

Solution. Continuity requires that

Choosing a value of a– = 1–
3 , corresponding to the maximum power condition, the radius

ratios are R2/R1 = 1.225, R3 /R1 = 1.732 and R3 /R2 = 1.414.

Example 10.3. Using the above expressions for an actuator disc, determine the
power output of a HAWT of 30m tip diameter in a steady wind blowing at

(i) 7.5m/s,
(ii) 10m/s.

Assume that the air density is 1.2kg/m3 and that a– = 1–
3 .

Solution. Using eqn. (10.10) and substituting a– = 1–
3 , r = 1.2kg/m2 and A2 = p152,

then

(i) With cx1 = 7.5m/s, P = 106kW.
(ii) With cx1 = 10m/s, P = 251.3kW.

These two examples give some indication of the power available in the wind.
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Correcting for high values of a–

It is of some interest to examine the theoretical implications of what happens at high
values of a– and compare this with what is found experimentally. From the actuator disc
analysis we found that the velocity in the wake far downstream was determined by cx3

= cx1(1 - 2a–), and this becomes zero when a– = 0.5. In other words the actuator disc
model has already failed as there can be no flow when a– = 0.5. It is as if a large flat
plate had been put into the flow, completely replacing the rotor. Some opinion has it
that the theoretical model does not hold true for values of a– even as low as 0.4. So, it
becomes necessary to resort to empirical methods to include physical reality.

Figure 10.8 shows experimental values of CX for heavily loaded turbines plotted
against a–, taken from various sources, together with the theoretical curve of CX vs a–

given by eqn. (10.13). The part of this curve in the range 0.5 < a– < 1.0, shown by a
broken line, is invalid as already explained. The experiments revealed that the vortex
structure of the flow downstream disintegrates and that wake mixing with the sur-
rounding air takes place. Various authors including Glauert (1935), Wilson and Walker
(1976) and Anderson (1980), have presented curves to fit the data points in the regime
a– > 0.5. Anderson obtained a simple “best fit” of the data with a straight line drawn
from a point denoted by CxA located at a– = 1.0 to a tangent point T, the transition point,
on the theoretical curve located at a– = a–T. It is easy to show, by differentiation of the
curve CX = 4a– (1 - a–) and then fitting a straight line, that its equation is

(10.14)

where

Anderson recommended a value of 1.816 for CXA. Using this value, eqn. (10.14) reduces to

(10.15)C aX = +0 4256 1 3904. .

a CT XA= -1 1
2

0 5. .

C C C aX XA XA= - -( ) -( )4 1 10 5.

336 Fluid Mechanics, Thermodynamics of Turbomachinery

0 0.2

0.8

C
X

CXA

aT

1.6

0.6 0.8 1.0

a

FIG. 10.8. Comparison of theoretical curve and measured values of CX.



where a–T = 0.3262.
Sharpe (1990) noted that for most practical, existent HAWTs, the value of a– rarely

exceeds 0.6.

Estimating the power output
Preliminary estimates of rotor diameter can easily be made using simple actuator

disc theory. A number of factors need to be taken into account, i.e. the wind regime in
which the turbine is to operate and the tip–speed ratio. Various losses must be allowed
for, the main ones being the mechanical transmission including gearbox losses and the
electrical generation losses. From the actuator disc theory the turbine aerodynamic
power output is

Under theoretical ideal conditions the maximum value of Cp = 0.593. According to
Eggleston and Stoddard (1987), rotor Cp values as high as 0.45 have been reported.
Such high, real values of Cp relate to very precise, smooth aerofoil blades and tip–speed
ratios above 10. For most machines of good design a value of Cp from 0.3 to 0.35 would
be possible. With a drive train efficiency, hd and an electrical generation efficiency, hg

the output electrical power would be

Example10.4. Determine the size of rotor required to generate 20kW of electrical
power in a steady wind of 7.5m/s. It can be assumed that the air density, r = 1.2kg/m3,
Cp = 0.35, hg = 0.75 and hd = 0.85.

Solution. From the above expression the disc area is

Hence, the diameter is 21.2m.

Power output range
The kinetic power available in the wind is

(10.10b)

where A2 is the disc area and cx1 is the velocity upstream of the disc. The ideal power
generated by the turbine can therefore be expected to vary as the cube of the wind
speed. Figure 10.9 shows the idealised power curve for a wind turbine, where the above
cubic “law” applies between the so-called cut-in wind speed and the rated wind speed
at which the maximum power is first reached. The cut-in speed is the lowest wind speed
at which net (or positive) power is produced by the turbine. The rated wind speed gen-
erally corresponds to the point at which the efficiency of energy conversion is close to
its maximum.

At wind speeds greater than the rated value, for most wind turbines, the power output
is maintained constant by aerodynamic controls (discussed under “Control Methods”).
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The cut-out wind speed is the maximum permitted wind speed which, if reached, causes
the control system to activate braking, bringing the rotor to rest.

Blade element theory
Introduction

It has long been recognised that the work of Glauert (1935) in developing the fun-
damental theory of aerofoils and airscrews is among the great classics of aerodynamic
theory. Glauert also generalised the theory to make it applicable to wind turbines and,
with various modifications, it is still used in turbine design. It is often referred to as the
momentum vortex blade element theory or more simply as the blade element method.
However, the original work neglected an important aspect: the flow periodicity result-
ing from the turbine having a finite number of blades. Glauert assumed that elemen-
tary radial blade sections could be analysed independently, which is valid only for a
rotor with an infinite number of blades. However, several approximate solutions are
available (those of Prandtl and Tietjens (1957) and Goldstein (1929)), which enable
compensating corrections to be made for a finite number of blades. The simplest and
most often used of these, called the Prandtl correction factor, will be considered later
in this chapter. Another correction which is considered, is empirical and applies only
to heavily loaded turbines when the magnitude of the axial flow induction factor a–

exceeds the acceptable limit of the momentum theory. According to Sharpe (1990) the
flow field of heavily loaded turbines is not well understood and the results of the empir-
ical analysis mentioned are only approximate but better than those predicted by the
momentum theory.

The vortex system of an aerofoil

To derive a better understanding of the aerodynamics of the HAWT than was
obtained earlier from simple actuator disc theory, it is now necessary to consider the
forces acting on the blades. We may regard each radial element of a blade as an aero-
foil. The turbine is assumed to have a constant angular speed W and is situated in a
uniform wind of velocity cx1 parallel to the axis of rotation. The lift force acting on
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each element must have an associated circulation (see Chapter 3, “Circulation and
Lift”) around the blade. In effect there is a line vortex (or a set of line vortices) along
the aerofoil span. The line vortices which move with the aerofoil are called bound
vortices of the aerofoil. As the circulation along the blade length can vary, trailing
vortices will spring from the blade and will be convected downstream with the flow in
approximately helical paths, as indicated for a two-bladed wind turbine in Figure 10.10.
It will be observed that the helices, as drawn, gradually expand in radius as they move
downstream (at the wake velocity) and the pitch between each sheet becomes smaller
because of the deceleration of the flow (see Figure 10.5).

Torque t and the tangential flow induction factor a ¢

From Newton’s laws of motion it is evident that the torque exerted on the turbine
shaft must impart an equal and opposite torque on the airflow equal to the rate of change
of the angular momentum of the flow. There is no rotation of the flow upstream of the
blades or outside of the boundary stream tube.

According to Glauert, this rotational motion is to be ascribed partly to the system of
trailing vortices and partly to the circulation around the blades. Due to the trailing vor-
tices, the flow in the plane of the turbine blades will have an angular velocity a¢W in
the direction opposite to the blade rotation, and the circulation around the blades will
cause equal and opposite angular velocities to the flows immediately upstream and
downstream of the turbine blades. The sum of these angular velocity components, of
course, is zero upstream of the blades, because no rotation is possible until the flow
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FIG. 10.10. Schematic drawing of the vortex system convecting downstream of a 
two-bladed wind turbine rotor.



reaches the vortex system generated by the blades. It follows from this that the angular
velocity downstream of the blades is 2a¢W and the interference flow, which acts on the
blade elements, will have the angular velocity a¢W. These deliberations will be of some
importance when the velocity diagram for the turbine flow is considered (see Figure
10.11).

Glauert regarded the exact evaluation of the interference flow to be of great com-
plexity because of the periodicity of the flow caused by the blades. He asserted that for
most purposes it is sufficiently accurate to use circumferentially averaged values, equiv-
alent to assuming that the thrust and the torque carried by the finite number of blades
are replaced by uniform distributions of thrust and torque spread over the whole cir-
cumference at the same radius.

Consider such an elementary annulus of a HAWT of radius r from the axis of rota-
tion and of radial thickness dr. Let dt be the element of torque equal to the rate of
decrease in angular momentum of the wind passing through the annulus. Thus,

(10.16)

or (10.16a)d dt pr= -( ) ¢4 11
3Wc a a r rx

d d dt p r= ( ) ◊ ¢ = ( ) ◊ ¢m a r r r c a rx2 2 22
2

2W W
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In the actuator disc analysis the value of a (denoted by a–) is a constant over the whole
of the disc. With blade element theory the value of a is a function of the radius. 
This is a fact which must not be overlooked. A constant value of a could be
obtained for a wind turbine design with blade element theory but only by varying the
chord and the pitch in some special way along the radius. This is not a useful design
requirement.

Assuming the axial and tangential induction factors a and a¢ are functions of r we
obtain an expression for the power developed by the blades by multiplying the above
expression by W and integrating from the hub rh to the tip radius R,

(10.17)

Forces acting on a blade element

Consider now a turbine with Z blades of tip radius R each of chord l at radius r and
rotating at angular speed W. The pitch angle of the blade at radius r is b measured from
the zero lift line to the plane of rotation. The axial velocity of the wind at the blades is
the same as the value determined from actuator disc theory, i.e. cx2 = cx1(1 - a), and 
is perpendicular to the plane of rotation.

Figure 10.11 shows the blade element moving from right to left together with the
velocity vectors relative to the blade chord line at radius r.

The resultant of the relative velocity immediately upstream of the blades is,

(10. 18)

and this is shown as impinging onto the blade element at angle j to the plane of 
rotation. It will be noticed that the tangential component of velocity contributing to w
is the blade speed augmented by the interference flow velocity, a¢Wr. The following
relations will be found useful in later algebraic manipulations

(10.19)

(10.20)

(10.21)

Figure 10.11 shows the lift force L and the drag force D drawn (by convention)
perpendicular and parallel to the relative velocity at entry respectively. In the normal
range of operation, D although rather small (1 to 2%) compared with L, is not to be
entirely ignored. The resultant force, R, is seen as having a component in the direction
of blade motion. This is the force contributing to the positive power output of the
turbine.

From Figure 10.11 the force per unit blade length in the direction of motion is

(10.22)

and the force per unit blade length in the axial direction is

(10.23)X L D= +cos sin .j j

Y L D= -sin cos ,j j
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ˆ
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1W

cosj = + ¢( )Wr a w1

sinj = = -( )c w c a wx x2 1 1
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Lift and drag coefficients

We can define the lift and drag coefficients as

(10.24)

(10.25)

where, by the convention employed for an isolated aerofoil, w is the incoming relative
velocity and l is the blade chord. The coefficients CL and CD are functions of the angle
of incidence, a = j - b, as defined in Figure 10.11, as well as the blade profile and
blade Reynolds number. In this chapter the angle of incidence is understood to be mea-
sured from the zero lift line (see Chapter 5, in connection with “Lift coefficient of a fan
aerofoil”) for which the CL vs a curve goes through zero. It is important to note that
Glauert (1935, 1976), when considering aerofoils of small camber and thickness,
obtained a theoretical expression for the lift coefficient,

(10.26)

The theoretical slope of the curve of lift coefficient against incidence is 2p per radian
(for small values of a) or 0.11 per degree but, from experimental results, a good average
generally accepted is 0.1 per degree within the pre-stall regime. This very useful result
will be used extensively in calculating results later. However, measured values of the
lift-curve slope reported by Abbott and von Doenhoff (1959) for a number of NACA
four- and five-digit series and NACA 6-series wing sections, measured at a Reynolds
number of 6 ¥ 106, gave 0.11 per degree. But, these blade profiles were intended for
aircraft wings, so some departure from the rule might be expected when the applica-
tion is the wind turbine.

Again, within the pre-stall regime, values of CD are small and the ratio of CD /CL is
usually about 0.01. Figure 10.12 shows typical variations of lift coefficient CL plotted
against incidence a and drag coefficient CD plotted against CL for a wind turbine blade
tested beyond the stall state. The blades of a wind turbine may occasionally have to

CL = 2p asin

C D w lD a r( ) = ( )1
2

2

C L w lL a r( ) = ( )1
2

2
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operate in post-stall conditions when CD becomes large; then the drag term needs to be
included in performance calculations. Details of stall modelling and formulae for CD

and CL under post-stall conditions are given by Eggleston and Stoddard (1987).
The correct choice of aerofoil sections is very important for achieving good per-

formance. The design details and the resulting performance are clearly competitive and
not much information is actually available in the public domain. In the USA, the
Department of Energy (DOE) developed a series of aerofoils specifically for wind
turbine blades. These aerofoils were designed to provide the necessarily different per-
formance characteristics from the blade root to the tip while accommodating the struc-
tural requirements. Substantially increased energy output (from 10 to 35%) from wind
turbines with these new blades have been reported. The data is catalogued and is avail-
able to the US wind industry.* Many other countries have national associations,
research organisations and conferences relating to wind energy and contact details are
listed by Ackermann and Söder (2002).

Connecting actuator disc theory and blade element theory

The elementary axial force and elementary force exerted on one blade of length dr
at radius r are

For a turbine having Z blades and using the definitions for CL and CD given by eqns.
(10.24) and (10.25), we can write expressions for the elementary torque, power and
thrust as

(10.27)

(10.28)

(10.29)

It is now possible to make a connection between actuator disc theory and blade element
theory. (Values of a and a¢ are allowed to vary with radius in this analysis.) From eqn.
(10.2), for an element of the flow, we obtain

(10.30)

Equating eqns. (10.29) and (10.30) and with some rearranging etc., we get

(10.31)

Again, considering the tangential momentum, from eqn. (10.16) the elementary torque
is

Equating this with eqn. (10.27) and simplifying, we get

d dt p r q= ( ) ( )2 22r r c rcx

a a Zl C C rL D1 8 2-( ) = +( ) ( )cos sin sinf f p f

d d dX m c c mc a ax x x= -( ) = -( )1 3 2 1 .

d dX w C C Zl rL D= +( )1
2

2r j fcos sin .
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(10.32)

Using eqn. (10.20) we find

and, with eqn. (10.19), eqn. (10.32) becomes

(10.33)

Introducing a useful new dimensionless parameter, the blade loading coefficient,

(10.34)

into eqns. (10.31) and (10.33), we get

(10.35)

(10.36)

(10.37)

Tip–speed ratio

A most important non-dimensional parameter for the rotors of HAWTs is the
tip–speed ratio, defined as

(10.38)

This parameter controls the operating conditions of a turbine and strongly influences
the values of the flow induction factors, a and a¢.

Using eqn. (10.38) in eqn. (10.21) we write the tangent of the relative flow angle j
as

(10.39)

Turbine solidity

A primary non-dimensional parameter that characterises the geometry of a wind
turbine is the blade solidity, s. The solidity is defined as the ratio of the blade area to
the disc area,

where

This is usually written as

(10.40)

where lav is the mean blade chord.
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Solving the equations

The foregoing analysis provides a set of relations which can be solved by a process
of iteration, enabling a and a¢ to be determined for any specified pitch angle b, pro-
vided that convergence is possible. To obtain faster solutions, we will use the approx-
imation that e ª 0 in the normal efficient range of operation (i.e. the pre-stall range).
The above equations can now be written as

(10.35a)

(10.36a)

These equations are about as simple as it is possible to make them and they will be
used to model some numerical solutions.

Example 10.5. Consider a three-bladed HAWT with a rotor 30m diameter, operat-
ing with a tip–speed ratio J = 5.0. The blade chord is assumed to be constant at 1.0m.
Assuming that the drag coefficient is negligible compared with the lift coefficient, deter-
mine using an iterative method of calculation the appropriate values of the axial and
tangential induction factors at r/R = 0.9 where the pitch angle b is 2deg.

Solution. It is best to start the calculation process by putting a = a¢ = 0. The values,
of course, will change progressively as the iteration proceeds. Thus, using eqn. (10.39),

Using the approximation (see above) that CL = 0.1 ¥ a = 0.989, then

Thus

Using these new values of a and a¢ in eqn. (10.39), the calculation is repeated itera-
tively until convergence is achieved, usually taking another four or five cycles (but in
calculations where if a > 0.3, many more iterations will be needed). Finally, and with
sufficient accuracy,

Also, f = 9.582deg and CL = 0.1 ¥ (f - b ) = 0.758.
It may be advisable at this point for the student to devise a small computer program

(if facilities are available) or use a programmable hand calculator for calculating further
values of a and a¢. (Even a simple scientific calculator will yield results, although more
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tediously.) An outline of the algorithm, called the BEM method, is given in Table 10.1,
which is intended to become an important and useful time-saving tool. Further exten-
sion of this method will be possible as the theory is developed.

The blade element momentum method
All the theory and important definitions to determine the force components on a blade

element have been introduced and a first trial approach has been given to finding a solu-
tion in Example 10.4. The various steps of the classical BEM model from Glauert are
formalised in Table 10.1 as an algorithm for evaluating a and a¢ for each elementary
control volume.

Spanwise variation of parameters

Along the blade span there is a significant variation in the blade pitch angle b, which
is strongly linked to the value of J and to a lesser extent to the values of the lift coef-
ficient CL and the blade chord l. The ways both CL and l vary with radius are at the dis-
cretion of the turbine designer. In the previous example the value of the pitch angle
was specified and the lift coefficient was derived (together with other factors) from it.
We can likewise specify the lift coefficient, keeping the incidence below the angle of
stall and from it determine the angle of pitch. This procedure will be used in the next
example to obtain the spanwise variation of b for the turbine blade. It is certainly true
that for optimum performance the blade must be twisted along its length with the result
that, near the root, there is a large pitch angle. The blade pitch angle will decrease with
increasing radius so that, near the tip, it is close to zero and may even become slightly
negative. The blade chord in the following examples has been kept constant to limit
the number of choices. Of course, most turbines in operation have tapered blades 
whose design features depend upon blade strength as well as economic and aesthetic
considerations.

Example 10.6. A three-bladed HAWT with a 30m tip diameter is to be designed to
operate with a constant lift coefficient CL = 0.8 along the span, with a tip–speed ratio
J = 5.0. Assuming a constant chord of 1.0m, determine, using an iterative method of
calculation, the variation along the span (0.2 £ r/R £ 1.0) of the flow induction factors
a and a¢ and the pitch angle b.
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TABLE 10.1. BEM method for evaluating a and a¢

Step Action required

1 Initialise a and a¢ with zero values
2 Evaluate the flow angle using eqn. (10.38)
3 Evaluate the local angle of incidence, a = f - b
4 Determine CL and CD from tables (if available) or from formula
5 Calculate a and a¢
6 Check on convergence of a and a¢, if not sufficient go to step 2, else go to step 7
7 Calculate local forces on the element



Solution. We begin the calculation at the tip, r = 15m and, as before, take initial
values for a and a¢ of zero. Now,

After a further five iterations (to obtain sufficient convergence) the result is

The results of the computations along the complete span (0.2 £ r/R £ 1.0) for a and
a¢ are shown in Table 10.2. It is very evident that the parameter a varies markedly with
radius, unlike the actuator disc application where a– was constant. The spanwise varia-
tion of the pitch angle b for CL = 0.8 (as well as for CL = 1.0 and 1.2 for comparison)
is shown in Figure 10.13. The large variation of b along the span is not surprising and
is linked to the choice of the value of J, the tip–speed ratio. The choice of inner radius
ratio r/R = 0.2 was arbitrary. However, the contribution to the power developed from
choosing an even smaller radius would have been negligible.
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TABLE 10.2. Summary of results of iterations (N.B. CL = 0.8 along the span)

r/R 0.2 0.3 0.4 0.6 0.8 0.9 0.95 1.0
j 42.29 31.35 24.36 16.29 11.97 10.32 9.59 8.973
b 34.29 23.35 16.36 8.29 3.97 2.32 1.59 0.97
a 0.0494 0.06295 0.07853 0.1138 0.1532 0.1742 0.1915 0.2054
a¢ 0.04497 0.0255 0.01778 0.01118 0.00820 0.00724 0.00684 0.00649
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FIG. 10.13. Variation of blade pitch angle b with radius ratio r/R for CL = 0.8, 1.0 and
1.2 (see Example 10.6 for conditions).



Evaluating the torque and axial force

The incremental axial force can be derived from eqns. (10.29) and (10.19) in the
form

(10.41)

and the incremental torque can be derived from eqns. (10.27) and (10.20) as

(10.42)

In determining numerical solutions, these two equations have proved to be more reli-
able in use than some alternative forms which have been published. The two preced-
ing equations will now be integrated numerically.

Example 10.7. Determine the total axial force, the torque, the power and the power
coefficient of the wind turbine described in Example 10.5. Assume that cx1 = 7.5m/s
and that the air density r = 1.2kg/m3.

Solution. Evaluating the elements of axial force DX having previously determined
the mid-ordinate values of a, a¢ and f in order to gain greater accuracy, the relevant
data is shown in Table 10.3.

where, in Table 10.3, Var. 1 = {(1 - a)/sin f}2CL cosfD(r/R)

Then with 1–
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2 ¥ 1.2 ¥ 3 ¥ 15 ¥ 7.52 = 1518.8, we obtain

In Table 10.4, Var. 2 = {(1 + a¢)/cosf}2(r/R)3CL sinfD(r/R),

and with 1–
2 rZlW2R4 = 0.5695 ¥ 106,

Hence, the power developed is P = tW = 67.644kW. The power coefficient, see eqn.
(10.11), is
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TABLE 10.3. Data used for summing axial force

Mid r/R 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.95
Dr/R 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
a 0.05565 0.0704 0.0871 0.1053 0.1248 0.1456 0.1682 0.1925
j deg 36.193 27.488 21.778 17.818 14.93 12.736 10.992 9.5826
Var. 1 0.1648 0.2880 0.4490 0.6511 0.8920 1.172 1.4645 1.8561



and the relative power coefficient is, see eqn. (10.12a),

Example 10.8. The relationship between actuator disc theory and blade element
theory can be more firmly established by evaluating the power again, this time using
the actuator disc equations.

Solution. To do this we need to determine the equivalent constant value for a–. From
eqn. (10.13),

with X = 10,583 N and 1–
2 rc2

x1A2 = 1–
2 ¥ 1.2 ¥ 7.52 ¥ p ¥ 152 = 23,856, we obtain

Solving the quadratic equation, we get a– = 0.12704.
From eqn. (10.10), P = 2rA2c3

x1a
–(1 - a–)2, and substituting values,

and this agrees fairly well with the value obtained in Example 10.7.
N.B. The lift coefficient used in this example, admittedly modest, was selected purely

to illustrate the method of calculation. For initial design, the equations developed above
would suffice but some further refinements can be added. An important refinement con-
cerns the Prandtl correction for the number of blades.

Correcting for a finite number of blades

So far, the analysis has ignored the effect of having a finite number of blades. The
fact is that at a fixed point the flow fluctuates as a blade passes by. The induced veloc-
ities at the point are not constant with time. The overall effect is to reduce the net
momentum exchange and the net power of the turbine. Some modification of the analy-
sis is needed and this is done by applying a blade tip correction factor. Several solu-
tions are available: (i) an exact one due to Goldstein (1929), represented by an infinite
series of modified Bessel functions, and (ii) a closed form approximation due to Prandtl
and Tietjens (1957). Both methods give similar results and Prandtl’s method is the one
usually preferred.

P = 69 286. kW

C

a a
X = =

-( ) = =
10 583 23 856 0 4436

1 0 4436 4 0 1109

, , .

. . .

C a a X c AX x= -( ) = ( )4 1 1
2 1

2
2r

z = =
27

16
0 638CP . .

Wind Turbines 349

TABLE 10.4. Data used for summing torque

Mid r/R 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950
a¢ 0.0325 0.02093 0.0155 0.0123 0.0102 0.0088 0.0077 0.00684
j 36.19 27.488 21.778 17.818 14.93 12.736 10.992 9.5826
(r/R)3 0.0156 0.0429 0.0911 0.1664 0.2746 0.4219 0.6141 0.8574
Var. 2 1.206 2.098 3.733 4.550 6.187 7.959 9.871 11.905

(¥10-3)



Prandtl’s correction factor

The mathematical details of Prandtl’s analysis are beyond the scope of this book, but
the result is usually expressed as,

(10.43)

where, as shown in Figure 10.14, d is the pitchwise distance between the successive
helical vortex sheets and s = R - r. From the geometry of the helices,

where sinf = cx2/w. Thus,

(10.44a)

This can be evaluated with sufficient accuracy and perhaps more conveniently with the
approximation,

(10.44b)

The circulation at the blade tips reduces to zero because of the vorticity shed from it,
in the same way as at the tip of an aircraft wing. The expressions above ensure that F
becomes zero when r = R but rapidly increases towards unity with decreasing radius.

The variation of F = F(r/R) is shown in Figure 10.15 for J = 5 and Z = 2, 3, 4 and
6. It will be clear from the graph and the above equations that the greater the pitch d
and the smaller the number of blades Z, the bigger will be the variation of F (from
unity) at any radius ratio. In other words the amplitude of the velocity fluctuations will
be increased.

Prandtl’s tip correction factor is applied directly to each blade element, modifying
the elementary axial force, obtained from eqn. (10.13),

to become

d dX a a rc rx= -( )4 1 1
2pr

ps d Z r R J= -( ) +( )1
2

2 0 5
1 1

.

d a Rc wZ

s d Z r R w c Z r R
x

x

= -( ) ( )
= -( ) = -( )

2 1

1 1
1

1
2 2

1
2

p
p fsin .

d R Z= ( )2p fsin

F s d= ( ) -( ){ }-2 1p pcos exp
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FIG. 10.14. Prandtl tip loss model showing the distances used in the analysis.



(10.45)

and the elementary torque, eqn. (10.16),

is modified to become

(10.46)

Following the reduction processes which led to eqns. (10.35) and (10.36), the last two
numbered equations give the following results:

(10.47)

(10.48)

The application of the Prandtl tip correction factor to the elementary axial force and
elementary torque equations has some important implications concerning the overall
flow and the interference factors. The basic meaning of eqn. (10.45) is

i.e. the average axial induction factor in the far wake is 2aF when the correction factor
is applied as opposed to 2a when it is not. Note also that, in the plane of the disc (or
the blades), the average induction factor is aF, and that the axial velocity becomes

d dX m aFcx= ( )2 1

a a F¢ + ¢( ) = -( ) ( )1 l f e f f fsin cos sin cos

a a F1 2-( ) = +( ) ( )l f e f fcos sin sin

d dt pr= -( ) ¢4 11
3Wc a a Fr rx .

d dt pr= -( ) ¢4 11
3Wc a a r rx

d dX a a rc F rx= -( )4 1 1
2pr

Wind Turbines 351

0
0.4

0.2

0.4

0.6

0.8

1.0

0.6

r/R

F

0.8

2

3
4

Z = 6

1.0

FIG. 10.15. Variation of Prandtl correction factor F with radius ratio for blade number
Z = 2, 3, 4 and 6.



From this we see that at the tips of the blades cx2 = cx1, because F is zero at that radius.
N.B. It was explained earlier that the limit of application of the theory occurs when

a Æ 0.5, (i.e. cx2 = cx1(1 - 2a), and, as the earlier calculations have shown, a is usually
greatest towards the blade tip. However, with the application of the tip correction factor
F, the limit state becomes aF = 0.5. As F progressively reduces to zero as the blade tip
is approached, the operational result gives, in effect, some additional leeway in the con-
vergence of the iterative procedure discussed earlier.

Performance calculations with tip correction included

In accordance with the previous approximation (to reduce the amount of work
needed), e is ascribed the value zero, simplifying the above equations for determining
a and a¢ to

(10.47a)

(10.48a)

When using the BEM method an extra step is required in Table 10.1 between steps 1
and 2 in order to calculate F, and it is necessary to calculate a new value of CL for each
iteration which, consequently, changes the value of the blade loading coefficient l as
the calculation progresses.

Example 10.9. This example repeats the calculations of Example 10.7 using the
same blade specification (i.e. the pitch angle b = b(r)) but now it includes the Prandtl
correction factor. The results of the iterations to determine a, a¢, j and CL and used as
data for the summations are shown in Table 10.5. The details of the calculation for one
mid-ordinate radius (r/R = 0.95) are shown first to clarify the process.

Solution. At r/R = 0.95, F = 0.522, using eqns. (10.44b) and (10.43). Thus, with Z
= 3, l = 1.0, then

In the BEM method we start with a = a¢ = 0 so, initially, tanj = (R/r)/J = (1/0.95)/5 =
0.2105. Thus, j = 11.89deg and CL = (j - b)/10 = (11.89 - 1.59)/10 = 1.03. Hence,
F/l = 60.5. With eqns. (10.47a) and (10.48a) we compute a = 0.2759 and a¢ = 0.0172.

The next cycle of iteration gives j = 8.522, CL = 0.693, F/l = 89.9, a = 0.3338 and
a¢ = 0.0114. Continuing the series of iterations we finally obtain

For the elements of force,

Where, in Table 10.5, Var. 1 = {(1 - a)/sinj}2 cosjCLD(r/R)

As in Example 10.6, 1–
2 ZlRc2

x1 = 1518.8, then

SVar. 1 = 6 3416. .

D DX ZlRc a C r Rx L= -( ){ } ( )1
2 1

2 2
1r j jsin cos

a a CL= ¢ = = =0 351 0 010 7 705 0 6115. , . , . , . .j

F CLl = 63 32.

a a F¢ + ¢( ) = ( )1 l fcos

a a F1 2-( ) = ( )l f fcos sin

c c aFx x2 1 1= -( ).
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Evaluating the elements of the torque using eqn. (10.42), where, in Table 10.6, Var. 2
= {(1 + a¢)/cosj}2(r/R)3CL sinjD(r/R),

then

Hence, P = tW = 57.960kW, CP = 0.324 and z = 0.547.
These calculations, summarised in Table 10.7, demonstrate that quite substantial

reductions occur in both the axial force and power output as a result of including the
Prandtl tip loss correction factor.

Rotor configurations
Clearly, with so many geometric design and operational variables to consider, it is

not easy to give general rules about the way performance of a wind turbine will be
effected by the values of parameters other than (perhaps) running large numbers of
computer calculations. The variables for the turbine include the number of blades, blade
solidity, blade taper and twist as well as tip–speed ratio.

t = ¥23 183 103. Nm.

S WVar. 2 and 1
2= ¥ = ¥-40 707 10 0 5695 103 2 4 6. . ,rZl R

X = ¥ =1518 8 6 3416 9 631. . , .N
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TABLE 10.5. Summary of results for all mid-ordinates

Mid r/R 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950
F 1.0 1.0 0.9905 0.9796 0.9562 0.9056 0.7943 0.522
CL 0.8 0.8 0.796 0.790 0.784 0.7667 0.7468 0.6115
a 0.055 0.0704 0.0876 0.1063 0.1228 0.1563 0.2078 0.3510
a¢ 0.0322 0.0209 0.0155 0.01216 0.0105 0.0093 0.00903 0.010
j deg 36.4 27.49 21.76 17.80 14.857 12.567 10.468 7.705
Var. 1 0.1643 0.2878 0.4457 0.6483 0.8800 1.1715 1.395 0.5803

TABLE 10.6. Data used for summing torque

Mid r/R 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950
(r/R)3 0.01563 0.04288 0.09113 0.1664 0.2746 0.4219 0.6141 0.7915
Var. 2 ¥ 10-3 1.2203 2.097 3.215 4.541 6.033 7.526 8.773 7.302

TABLE 10.7. Summary of results

Axial force, kN Power, kW CP z

Without tip correction 10.583 67.64 0.378 0.638
With tip correction 9.848 57.96 0.324 0.547



Blade planform

In all the preceding worked examples a constant value of chord size was used, mainly
to simplify proceedings. The actual planform used for the blades of most HAWTs is
tapered, the degree of taper is chosen for structural, economic and, to some degree, aes-
thetic reasons. If the planform is known or one can be specified, the calculation pro-
cedure developed previously, i.e. the BEM method, can be easily modified to include
the variation of blade chord as a function of radius.

In a following section, Glauert’s analysis is extended to determine the variation of
the rotor blade planform under optimum conditions.

Effect of varying the number of blades

A first estimate of overall performance (power output and axial force) based on actu-
ator disc theory was given earlier. The choice of the number of blades needed is one
of the first items to be considered. Wind turbines have been built with anything from
1 to 40 blades. The vast majority of HAWTs, with high tip–speed ratios, have either
two or three blades. For purposes such as water pumping, rotors with low tip–speed
ratios (giving high starting torques) employ a large number of blades. The chief con-
siderations to be made in deciding on the blade number, Z, are the design tip–speed
ratio, J, the effect on the power coefficient, CP, as well as other factors such as weight,
cost, structural dynamics and fatigue life, about which we cannot consider in this short
chapter.

Tangler (2000) has reviewed the evolution of the rotor and the design of blades for
HAWTs, commenting that for large commercial machines, the upwind, three-bladed
rotor is the industry accepted standard. Most large machines built since the mid-1990s
are of this configuration. The blade number choice appears to be guided mainly by
inviscid calculations presented by Rohrback and Worobel (1977) and Miller and
Dugundji (1978). Figure 10.16 shows the effect on the power coefficient CP of blade
number for a range of tip–speed ratio, J. It is clear, on the basis of these results, that
there is a significant increase in CP in going from one blade to two blades, rather less
gain in going from two to three blades and so on for higher numbers of blades. In reality,
the apparent gains in CP would be quickly cancelled when blade frictional losses are
included with more than two or three blades.

Tangler (2000) indicated that considerations of rotor noise and aesthetics strongly
support the choice of three blades rather than two or even one. Also, for a given rotor
diameter and solidity, a three-bladed rotor will have two thirds the blade loading of a
two-bladed rotor resulting in lower impulsive noise generation.

Effect of varying tip–speed ratio

The tip–speed ratio J is generally regarded as a parameter of some importance in the
design performance of a wind turbine. So far, all the examples have been determined
with one value of J and it is worth finding out how performance changes with other
values of the tip–speed ratio. Using the procedure outlined in Example 10.6, assuming
zero drag (e = 0) and ignoring the correction for a finite number of blades, the overall
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performance (axial force and power) has been calculated for CL = 0.6, 0.8 and 1.0 (with
l = 1.0) for a range of J values. Figure 10.17 shows the variation of the axial force coef-
ficient CX plotted against J for the three values of CL and Figure 10.18 the correspon-
ding values of the power coefficient CP plotted against J. A point of particular interest
is that at which CX is replotted as CX /(JCL) all three sets of results collapse onto one
straight line, as shown in Figure 10.19. The main interest in the axial force would be
its effect on the bearings and on the supporting structure of the turbine rotor. A detailed
discussion of the effects of both steady and unsteady loads acting on the rotor blades
and supporting structure of HAWTs is given by Garrad (1990).

N.B. The range of the above calculated results is effectively limited by the non-
convergence of the value of the axial flow induction factor a at, or near, the blade tip
at high values of J. The largeness of the blade loading coefficient, l = ZlCL/(8pr), is
wholly responsible for this non-convergence of a. In practical terms, l can be reduced
by decreasing CL or by reducing l (or by a combination of these). Also, use of the tip
correction factor in calculations will extend the range of J for which convergence of a
can be obtained. The effect of any of these measures will be to reduce the amount of
power developed. However, in the examples throughout this chapter, in order to make
valid comparisons of performance the values of lift coefficients and chord are fixed. It
is of interest to note that the curves of the power coefficient CP all rise to about the
same value, approximately 0.48, where the cut-off due to non-convergence occurs.
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Rotor optimum design criteria

Glauert’s momentum analysis provides a relatively simple yet accurate framework
for the preliminary design of wind turbine rotors. An important aspect of the analysis
not yet covered was his development of the concept of the “ideal windmill” which pro-
vides equations for the optimal rotor. In a nutshell, the analysis gives a preferred value
of the product CLl for each rotor blade segment as a function of the local speed ratio j
defined by



(10.49)

By choosing a value for either CL or l enables a value for the other variable to be deter-
mined from the known optimum product CLl at every radius.

The analysis proceeds as follows. Assuming CD = 0, we divide eqn. (10.36a) by eqn.
(10.35a) to obtain

(10.50)

Also, from eqns. (10.39) and (10.49), we have

(10.51)

We now substitute for tanj in eqn. (10.50) to obtain

(10.52)

Thus, at any radius r, the value of j is constant for a fixed tip–speed ratio J, and the
right-hand side is likewise constant. Looking again at eqn. (10.17), for specific values
of cx1 and W, the power output is a maximum when the product (1 - a) a¢ is a maximum.
Differentiating this product and setting the result to zero, we obtain
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From eqn. (10.52), after differentiating and some simplification, we find

(10.54)

Substituting eqn. (10.53) into eqn. (10.54) we get

Combining this equation with eqn. (10.51) we obtain

Solving this equation for a¢,

(10.55)

Substitute eqn. (10.55) back into eqn. (10.52) and using 1 + a¢ = a/(4a - 1), we get

(10.56)

Equations (10.53) and (10.55) can be used to determine the variation of the inter-
ference factors a and a¢ with respect to the coordinate j along the turbine blade length.
After combining eqn. (10.55) with (10.56) we obtain

(10.57)

Equation (10.57), derived for these ideal conditions, is valid only over a very narrow
range of a, i.e. 1–

4 < a < 1–
3 . It is important to keep in mind that optimum conditions are

much more restrictive than general conditions. Table 10.8 gives the values of a¢ and j
for increments of a in this range (as well as j and l). It will be seen that for large
values of j the interference factor a is only slightly less than 1–

3 and a¢ is very small.
Conversely, for small values of j the interference factor a approaches the value 1–

4 and
a¢ increases rapidly.
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TABLE 10.8. Relationship between a¢, a, j, j and l at
optimum conditions

a a¢ j f deg l

0.260 5.500 0.0734 57.2 0.4583
0.270 2.375 0.157 54.06 0.4131
0.280 1.333 0.255 50.48 0.3637
0.290 0.812 0.374 46.33 0.3095
0.300 0.500 0.529 41.41 0.2500
0.310 0.292 0.753 35.33 0.1842
0.320 0.143 1.150 27.27 0.1111
0.330 0.031 2.63 13.93 0.0294
0.333 0.003 8.574 4.44 0.0030



The flow angle j at optimum power conditions is found from eqns. (10.50) and
(10.55),

(10.58)

Again, at optimum conditions, we can determine the blade loading coefficient l in
terms of the flow angle j. Starting with eqn. (10.55), we substitute for a¢ and a using
eqns. (10.36a) and (10.35a). After some simplification we obtain

Solving this quadratic equation we obtain a relation for the optimum blade loading coef-
ficient as a function of the flow angle j,

(10.59)

Returning to the general conditions, from eqn. (10.51) together with eqns. (10.35a) and
(10.36a), we obtain

(10.60)

Rewriting eqns. (10.35a) and (10.36a) in the form

and substituting into eqn. (10.60) we get

(10.61)

Reintroducing optimum conditions with eqn. (10.59), then

(10.62)

(10.63)

Some values of l are shown in Table 10.8. Equation (10.62) enables j to be calcu-
lated directly from j. The above equations also allow the optimum blade layout in terms
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of the product of the chord l and the lift coefficient CL (for CD = 0) to be determined.
By ascribing a value of CL at a given radius the corresponding value of l can be deter-
mined, or conversely.

Example 10.10. A three-bladed HAWT, with a 30m tip diameter, is to be designed
for optimum conditions with a constant lift coefficient CL of unity along the span and
with a tip–speed ratio J = 5.0. Determine a suitable chord distribution along the blade,
from a radius of 3m to the blade tip, satisfying these conditions.

Solution. It is obviously easier to input values of j in order to determine the values
of the other parameters than attempting the reverse process. To illustrate the procedure,
choose j = 10deg so we determine jl = 0.0567, using eqn. (10.63). From eqn. (10.59)
we determine l = 3.73 and then find j = 3.733. Now

As

after substituting J = 5, R = 15m, Z = 3, CL = 1.0. Thus,

and Table 10.9 shows the optimum blade chord and radius values.
Figure 10.20 shows the calculated variation of blade chord with radius. The rapid

increase in chord as the radius is reduced would suggest that the blade designer would
ignore optimum conditions at some point and accept a slightly reduced performance.
A typical blade planform (for the Micon 65/13 HAWT, Tangler et al. 1990) is also
included in this figure for comparison.

The power output at optimum conditions
Equation (10.17) expresses the power output under general conditions, i.e. when the

rotational interference factor a¢ is retained in the analysis. From this equation the power
coefficient can be written as
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TABLE 10.9. Values of blade chord and radius (optimum
conditions)

j (deg) j 4jl r (m) l (m)

30 1.00 0.536 3.0 3.368
20 1.73 0.418 5.19 2.626
15 2.42 0.329 7.26 2.067
10 3.733 0.2268 11.2 1.433
7.556 5 0.1733 15 1.089



This equation converts to optimum conditions by substituting eqn. (10.56) into it, i.e.

(10.64)

where the limits of the integral are changed to jh and J = WR/cx1. Glauert (1935) derived
values for CP for the limit range j = 0 to J (from 0.5 to 10) by numerical integration
and the relative maximum power coefficient z. These values are shown in Table 10.10.
So, to obtain a large fraction of the possible power it is apparent that the tip–speed ratio
J should not be too low.

HAWT blade section criteria
The essential requirements of turbine blades clearly relate to aerodynamic perfor-

mance, structural strength and stiffness, ease of manufacture and ease of maintenance
in that order. It was assumed, in the early days of turbine development, that blades with
high lift and low drag were the ideal choice with the result that standard aerofoils, e.g.
NACA 44XX, NACA 230XX, etc. (where the XX denotes thickness to chord ratio, as
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FIG. 10.20. Examples of variation of chord length with radius. (a) Optimal variation of
chord length with radius, according to Glauert theory, for CL = 1.0; (b) A typical blade

planforn (used for the Micon 65/13 HAWT).

TABLE 10.10. Power coefficients at optimum conditions

J z CP J z CP

0.5 0.486 0.288 2.5 0.899 0.532
1.0 0.703 0.416 5.0 0.963 0.570
1.5 0.811 0.480 7.5 0.983 0.582
2.0 0.865 0.512 10.0 0.987 0.584



a percentage), suitable for aircraft were selected for wind turbines. The aerodynamic
characteristics and shapes of these aerofoils are summarised by Abbott and von
Doenhoff (1959).

The primary factor influencing the lift–drag ratio of a given aerofoil section is the
Reynolds number. The analysis developed earlier showed that optimal performance of
a turbine blade depends on the product of blade chord and lift coefficient, lCL. When
other turbine parameters such as the tip–speed ratio J and radius R are kept constant,
the operation of the turbine at a high value of CL thus allows the use of narrower blades.
Using narrower blades does not necessarily result in lower viscous losses, instead the
lower Reynolds number often produces higher values of CD. Another important factor
to consider is the effect on the blade structural stiffness which decreases sharply as
thickness decreases. The standard aerofoils mentioned above also suffered from a
serious fault; namely, a gradual performance degradation from roughness effects con-
sequent on leading-edge contamination. Tangler commented that “the annual energy
losses due to leading-edge roughness are greatest for stall-regulated* rotors”. Figure
10.21, adapted from Tangler et al. (1990) illustrates the surprising loss in power output
of a stall-regulated, three-bladed rotor on a medium-scale (65kW) turbine. The loss in
performance is proportional to the reduction in maximum lift coefficient along the
blade. The roughness also degrades the aerofoil’s lift-curve slope and increases profile
drag, further contributing to losses. Small-scale wind turbines are even more severely
affected because their lower elevation allows the accretion of more insects and dust
particles and the debris thickness is actually a larger fraction of the leading-edge radius.
Some details of the effect of blade fouling on a small-scale (10m diameter) rotor are
given by Lissaman (1998). Estimates of the typical annual energy loss (in the USA)
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caused by this increased roughness are 20 to 30%. The newer NREL turbine blades
described below are much less susceptible to the effects of fouling.

Developments in blade manufacture
Snel (1998) remarked, “in general, since blade design details are of a competitive

nature, not much information is present in the open literature with regard to these
items”. Fortunately, for progress, efficiency, the future expansion of wind energy power
plants (and this book), the progressive and enlightened policies of the US Department
of Energy, NASA and the National Renewable Energy Laboratory allowed the release
of much valuable knowledge to the world concerning wind turbines. Some important
aspects gleaned from this absorbing literature are given below.

Tangler and Somers (1995) outlined the development of special-purpose aerofoils
for HAWTs which began as a collaborative venture between the National Renewable
Energy Laboratory (NREL) and Airfoils Incorporated. Seven families of blades com-
prising 23 aerofoils were planned for rotors of various sizes. These aerofoils were
designed to have a maximum CL that was largely insensitive to roughness effects. This
was achieved by ensuring that the boundary layer transition from laminar to turbulent
flow on the suction surface of the aerofoil occurred very close to the leading edge, just
before reaching the maximum value of CL. These new aerofoils also have low values
of CD in the clean condition because of the extensive laminar flow over them. The
tip–region aerofoils typically have close to 50% laminar flow on the suction surface
and over 60% laminar flow on the pressure surface.

The preferred choice of blade from the NREL collection of results rather depends on
whether the turbine is to be regulated by stall, by variable blade pitch or by variable
rotor speed. The different demands made of the aerofoil from the hub to the tip pre-
clude the use of a single design type. The changing aerodynamic requirements along
the span are answered by specifying different values of lift and drag coefficients (and,
as a consequence, different aerofoil sections along the length). For stall-regulated tur-
bines, a limited maximum value of CL in the blade tip region is of benefit to passively
control peak rotor power. Figures 10.22 to 10.25 show families of aerofoils for rotors
originally designated as “small-, medium-, large- and very large-sized” HAWTs*,
designed specifically for turbines having low values of maximum blade tip CL. A notice-
able feature of these aerofoils is the substantial thickness–chord ratio of the blades,
especially at the root section, needed to address the structural requirements of “flap
stiffness” and the high root bending stresses.

According to Tangler (2000) the evolutionary process of HAWTs is not likely to
deviate much from the now firmly established three-bladed, upwind rotors, which 
are rapidly maturing in design. Further refinements, however, can be expected of 
the various configurations and the convergence towards the best of the three options 
of stall-regulated, variable-pitch and variable-speed blades. Blades on large, 
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*With the top end size of HAWTs growing ever larger with time, the size catagories of “large” or
“very large” used in the 1990s are rather misleading and, perhaps, better described by stating either
the relevant diameter or power range.
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FIG. 10.22. Thick aerofoil family for HAWTs of diameter 2 to 11m (P = 2 to 20kW).
(Courtesy NREL.)

stall-regulated wind turbines with movable speed control tips may be replaced by vari-
able-pitch blades for more refined peak power control and reliability.

With the very large HAWTs (i.e. 104m diameter, refer to Figure 10.4a) being brought
into use, new blade section designs and materials will be needed. Mason (2004) has
described “lightweight” blades being made from a carbon/glass fibre composite for the
125m diameter, 5MW HAWT to be deployed in the North Sea as part of Germany’s
first deepwater off-shore project.

Control methods (starting, modulating and stopping)
The operation of a wind turbine involves starting the turbine from rest, regulating

the power while the system is running, and stopping the turbine if and when the 
wind speed becomes excessive. Startup of most wind turbines usually means 
operating the generator as a motor to overcome initial resistive torque until sufficient
power is generated at “cut-in” speed assuming, of course, that a source of power is
available.

Blade pitch control

The angle of the rotor blades is actively adjusted by the machine control system.
This, known as blade pitch control, has the advantage that the blades have built-in
braking which brings the blades to rest. Pitching the whole blade requires large actua-
tors and bearings, increasing the weight and expense of the system. One solution to this



problem is to use partial span blade pitch control where only the outer one third of the
blade span is pitched.

Passive or stall control

The aerodynamic design of the blades (i.e. the distribution of the twist and thickness
along the blade length) varies in such a way that blade stall occurs whenever the wind
speed becomes too high. The turbulence generated under stall conditions causes less
energy to be transferred to the blades minimising the output of power at high wind
speeds.

According to Armstrong and Brown (1990) there continues to be some competi-
tion between the advocates of the various systems used in commercial wind farms. 
The classical European machines are usually stall regulated, while most American
designs are now either pitch regulated or, for large turbines, use some form of aileron
control.
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FIG. 10.23. Thick aerofoil family for HAWTs of diameter 11 to 21m (P = 20 to 100
kW). (Courtesy NREL.)



Aileron control

Aerodynamic control surfaces have been investigated by the DOE/NASA as an alter-
native to full blade-pitch control. The aileron control system has the potential to reduce
cost and weight of the rotors of large HAWTs. The control surfaces consist of a move-
able flap built into the outer part of the trailing edge of the blade, as shown in Figure
10.26a. Although they appear similar to the flaps and ailerons used on aircraft wings,
they operate differently. Control surfaces on an aircraft wing deflect downwards
towards the high-pressure surface in order to increase lift during takeoff and landing,
whereas on a wind turbine blade the flaps deflect towards the low-pressure surface (i.e.
downwind side) to reduce lift and cause a braking effect. Figure 10.26b shows sketches
of two typical control surface arrangements in the fully deflected position, included 
in a paper by Miller and Sirocky (1985). The configuration marked plain was found 
to have the best braking performance. The configuration marked balanced has both a
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FIG. 10.24. Thick aerofoil family for HAWTs of diameter 21 to 35m (P = 100 to 
400kW). (Courtesy NREL.) (N.B. Blade profile for S815 was not available.)



low-pressure and a high-pressure control surface, which helps to reduce the control
torque.

Ailerons change the lift and drag characteristics of the basic blade aerofoil as a func-
tion of the deflection angle. Full-scale field tests were conducted on the Mod-O wind
turbine* with ailerons of 20% chord and 38% chord. Results from loss-of-load to shut-
down showed that the 38% chord ailerons were the better aerodynamic braking device
than the 20% chord ailerons. Also, the 38% chord ailerons effectively regulated the
power output over the entire operating range of the Mod-O turbine. Figure 10.27 shows
the variation of the lift and drag coefficients for the 38% chord ailerons set at 0, -60
deg and -90 deg.

Although wind tunnel tests normally present results in terms of lift and drag coeffi-
cients, Miller and Sirocky (1985) wisely chose to represent their aileron-controlled
wind turbine results in terms of a chordwise force coefficient, CC (also called a suction
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Tip–region airfoil, 95% radius

Root–region airfoil, 40% radius
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FIG. 10.25. Thick aerofoil family for HAWTs with D > 36m (blade length 15 to 25m, 
P = 400 to 1000kW). (Courtesy NREL.)

*Details of the Mod-O wind turbine are given in Divone (1998).



coefficient). CC is a combination of both the lift and drag coefficients, as described
below:

(10.65)

where a = angle of attack.
The reason for using CC to describe aileron-control braking effectiveness is that only

the chordwise force produces torque (assuming a wind turbine blade with no pitch or

C C CC L D= -sin cosa a
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FIG. 10.26. Aileron control surfaces: (a) showing position of ailerons on two-bladed
rotor; (b) two types of aileron in fully deflected position (adapted from Miller and

Sirocky 1985).
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twist). Because of this direct relationship between chordwise force and rotor torque, 
CC serves as a convenient parameter for evaluating an aileron’s braking effective-
ness. Thus, if CC is negative it corresponds to a negative torque producing a rotor 
deceleration. Clearly, it is desirable to have a negative value of CC available for all
angles of attack. Figure 10.28 shows some experimental results, Snyder et al. (1984),
illustrating the variation of the chordwise force coefficient with the angle of attack, a,
for aileron percent chord of 20 and 30% for several aileron deflection angles. The
general conclusions to be drawn from these results is that increasing the aileron chord
length and the aileron deflection angle contribute to better aerodynamic braking 
performance.

Blade tip shapes
The blade geometry determined with various aerodynamic models gives no guidance

of an efficient aerodynamic tip shape. From a basic view of fluid mechanics, a strong
shed vortex occurs at the blade tip as a result of the termination of lift and this together
with the highly three-dimensional nature of the flow at the blade tip causes a loss of
lift. The effect is exacerbated with a blunt blade end as this increases the intensity of
the vortex.

Many attempts have been made to improve the aerodynamic efficiency by the addi-
tion of various shapes of “winglet” at the blade ends. Details of field tests on a number
of tip shapes intended to improve performance by controlling the shedding of the tip
vortex are given by Gyatt and Lissaman (1985). According to Tangler (2000), test expe-
rience has shown that rounding the leading-edge corner, Figure 10.29, with a contoured,
streamwise edge (a swept tip) yields good performance. Tip shapes of other geometries
are widely used. The sword tip also shown is often chosen because of its low noise
generation, but this is at the expense of a reduction in performance.
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FIG. 10.28. Effect of chord length on chordwise force coefficient, CC, for a range of
angles of attack. (Adapted from Snyder et al. 1984, unpublished).



Performance testing
Comparison and improvement of aerodynamic predictive methods for wind turbine

performance and field measurements have many inherent limitations. The natural wind
is capricious; it is unsteady, non-uniform and variable in direction, making the task of
interpreting performance measurements of questionable value. As well as the non-
steadiness of the wind, non-uniformity is present at all elevations as a result of “wind
shear”, the vertical velocity profile caused by ground friction. The problem of obtain-
ing accurate, measured, steady-state flow conditions for correlating with predictive
methods was solved by testing a full-size HAWT in the world’s largest wind tunnel,
the NASA Ames low-speed wind tunnel* with a test section of 24.4m ¥ 36.6m (80 ¥
120ft).

Performance prediction codes
Blade element theory

The BEM theory presented, because of its relative simplicity, has been the mainstay
of the wind turbine industry for predicting wind turbine performance. Tangler (2002)
has listed some of the many versions of performance prediction codes based upon the
BEM theory and reference to these is shown in the following table.
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Sword tip

Swept tip

FIG. 10.29. Blade tip geometries (Tangler 2000, courtesy NREL).

Code Name Reference

PROP Wilson and Walker (1976)
PROP93 McCarty (1993)
PROPID Selig and Tangler (1995)
WTPERF Buhl (2000)

*Further details of this facility can be found at windtunnels.arc.nasa.gov/80ft1.html.



According to Tangler (2002), some limitations are apparent in the BEM theory which
affect its accuracy and are related to simplifications that are not easily corrected.
Basically, these errors begin with the assumption of uniform inflow over each annulus
of the rotor disc and no interaction between annuli. Also, the tip loss model accounts
for blade number effects but not effects due to differences in blade planform.

Lifting Surface, Prescribed Wake Theory (LSWT)

Modelling the rotor blades with a lifting surface and its resulting vortex wake is
claimed to eliminate the errors resulting from the simplifications mentioned for the
BEM theory. LSWT is an advanced code capable of modelling complex blade geome-
tries and, according to Kocurek (1987), allows for wind shear velocity profiles, tower
shadow and off-axis operation. Performance predictions are calculated by combining
the lifting surface method with blade element analysis that incorporates two-
dimensional aerofoil lift and drag coefficients as functions of the angle of attack 
and the Reynolds number.

It is not possible to pursue the ramifications of this developing theory any further in
this introductory text. Gerber et al. (2004) give a useful, detailed description of LSWT
methodology and suggestions for its likely future development. Other leading refer-
ences that give details of LSWT theory are Kocurek (1987) and Fisichella (2001).

Comparison of theory with experimental data
A HAWT with a 10m diameter rotor was comprehensively tested by NREL in the

NASA Ames wind tunnel. Some of these test results are reported by Tangler (2002)
and only a brief extract comparing the predicted and measured power is given here.
The test configuration comprised a constant speed (72 rpm), two-bladed rotor, which
was upwind and stall regulated. Rotor blades (see Giguere and Selig 1998) for this test
had a linear chord taper with a non-linear twist distribution, as shown in Figure 10.30.
It operated with -3 deg tip pitch relative to the aerofoil chord line. The S809 aerofoil
was used from blade root to tip for simplicity and because of the availability of two-
dimensional wind tunnel data for the blade section.

Comparison of the measured power output with the BEM (WTPERF and PROP93)
and the LSWT predictions are shown in Figure 10.31, plotted against wind speed. At
low wind speeds, up to about 8m/s, both the BEM and LSWT predictions are in very
good agreement with the measured results. At higher wind speeds both theoretical
methods slightly underpredict the power actually measured, the LSWT method rather
more than the BEM method. It may be a matter of interpretation but it appears to this
writer that only after blade stall (when the measured power sharply decreases) does the
LSWT method approach closer to the measured power than the BEM method. Thus the
overall result obtained from wind tunnel measurements appears, in general, to strongly
confirm the validity of the BEM theory prior to the onset of stall.

Peak and post-peak power predictions
The comprehensive testing of a highly instrumented 10m rotor in the NASA

Ames 24.4 ¥ 36.6m wind tunnel has provided steady-state data that gives better 
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FIG. 10.30. Rotor blade tested in the NASA Ames wind tunnel showing the chord and
twist distributions (Tangler 2002, courtesy NREL).
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understanding of the complex phenomena of blade stall. Until recently, according to
Gerber et al. (2004), peak and post-peak power were mistakenly thought to coincide
with blade stall that originated in the root region and propagated towards the tip with
increased wind speed. This rather simplistic scenario does not occur due to three-
dimensional delayed stall effects. Analysis of some of the more recent data, Tangler
(2003), showed leading edge separation to occur in the mid-span region which spread
radially inwards and outwards with increased wind speed. The BEM approach lacks
the ability to model the three-dimensional stall process. Further efforts are being made
to take these real effects into account.

Environmental considerations
On what may be classed as environmental objections are the following topics,

arguably in decreasing order of importance: (i) visual intrusion, (ii) acoustic emissions,
(iii) impact on local ecology, (iv) land usage, and (v) effects on radio, radar and tele-
vision reception. Much has been written about all these topics, also numerous websites
cover each of them so, for brevity, only a brief recapitulation of some of the main issues
regarding the first two are afforded any space in this chapter.

Visual intrusion

The matter of public acceptance (in the UK and several other countries) is impor-
tant and clearly depends upon where the turbines are located and their size. The early
investigations of acceptability indicated that the sight of just a few turbines, perhaps a
mile or so distant, produced only a few isolated complaints and even appeared to gen-
erate some favourable interest from the public. However, any suggestion of locating
wind turbines on some nearby scenic hillside produced rather strong opposition, com-
ments in the press and the formation of groups to oppose the proposals. The opposi-
tion set up by a few vociferous landowners and members of the public in the 1990s
retarded the installation of wind farms for several years in many parts of the UK.
However, wind turbines in larger numbers located in relatively remote upland areas and
not occupying particularly scenic ground have been installed. Now (in 2004), medium-
and large-size wind turbines in small numbers (i.e. 20 to 30) are regarded as beneficial
to the community, providing they are not too close. Perhaps they may eventually
become tourist attractions in the area. The graceful, almost hypnotic turning of the
slender blades of the larger turbines, seemingly in slow motion, has generally led to a
more positive aesthetic reaction, in most surveys. Other factors can importantly sway
public acceptance of wind turbines. The first factor is the perceived benefit to the 
community with part or total ownership, giving lower power costs and possibly even
preferential availability of power. The second factor comes from the amount of careful
planning and cooperation between the installers and the leaders of the community long
before any work on installation commences. It is a strange fact that the old-fashioned,
disused windmills, now local landmarks, that abound in many parts of Europe (e.g. see
Figure 10.2) are now widely accepted.
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Acoustic emissions

Wind turbines undoubtedly generate some noise but, with the improvements in
design in recent years, the level of noise emitted by them has dropped remarkably.

Aerodynamic broadband noise is typically the largest contributor to wind turbine
noise. The main efforts to reduce this noise have included the use of lower blade tip
speeds, lower blade angles of attack, upwind turbine configuration, variable speed oper-
ation and specially modified blade trailing edges and tip shapes. For the new, very large
(i.e. 1–5MW size) wind turbines the rotor tip speed on land is limited (in the USA the
limit is 70m/s). However, large variable speed wind turbines often rotate at lower tip
speeds in low speed winds. As wind speed increases, the rotor speed is allowed to
increase until the limit is reached. This mode of operation results in much quieter
working at low wind speeds than a comparable constant speed wind turbine.

The study of noise emitted by wind turbines is a large and complex subject. No cov-
erage of the basic theory is given in this chapter. Numerous publications on acoustics
are available and one particularly recommended as it covers the study of fundamentals
to some extent is the white paper by Rogers and Manwell (2004), prepared by NREL.
A wide-ranging, deeper approach to turbine noise is given in the NASA/DOE publica-
tion “Wind Turbine Acoustics,” by Hubbard and Shepherd (1990).

A particular problem occurs in connection with small wind turbines. These turbines
are sold in large numbers in areas remote from electric utilities and are often installed
close to people’s homes, often too close. There is an urgent need for reliable data on
the levels of noise generated so that homeowners and communities can then reliably
anticipate the noise levels from wind turbines prior to installation. The NREL have per-
formed acoustic tests (Migliore et al. 2004) on eight small wind turbines with power
ratings from 400W to 100kW in order to develop a database of acoustic power output
of new and existing turbines and to set targets for low-noise rotors. Test results will be
documented as NREL reports, technical papers, seminars, colloquia and on the Internet.
In comparing the results, Migliore et al. reported that following improvements to the
blading, the noise from the Bergey Excel (see Figure 10.4b) was reduced to the point
that the turbine noise could not be separated from the background noise. As a result
any further testing will need to be done in a much quieter location.

Addendum

A 5 MW REpower Systems wind turbine has now been installed (Oct 1, 2004) at
Brunsbüttel in Schleswig-Holstein, Germany, according to a report in Renewable
Energy World (Nov–Dec 2004). The 3-bladed rotor has a tip diameter of 126.3 m (blade
length 61.5 m, maximum chord 4.6 m) and a hub height of 120 m.

The various speeds and rotor speed range quoted are:

Rotor speed 6.9–12.1 rev/min
Rated wind speed 13 m/s
Cut-in wind speed 3.5 m/s
Cut-out wind speed 25 m/s (onshore)

30 m/s (offshore)
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Comment about “missing” problems
It is apparent that there is no collection of problems in this chapter for the student

to tackle. The author takes the view that this chapter is fairly well strewn with worked
examples so that the student can easily vary the data in the examples given to provide
further exercises.

376 Fluid Mechanics, Thermodynamics of Turbomachinery



Bibliography
Cumpsty, N. A. (1989). Compressor Aerodynamics. Longman.
Cumpsty, N. A. (1997). Jet Propulsion (a simple guide to the aerodynamic and thermodynamic

performance of jet engines). Cambridge University Press.
Gostelow, J. P. (1984). Cascade Aerodynamics. Pergamon.
Greitzer, E. M. (1981). The stability of pumping systems—the 1980 Freeman Scholar Lecture.

J. Fluids Engineering, Trans Am. Soc. Mech. Engrs., 103, 193–242.
Hawthorne, Sir William. (1978). Aircraft propulsion from the back room. Aero. J., 93–108.
Horlock, J. H. (1973). Axial Flow Turbines. Kruger.
Horlock, J. H. and Marsh, H. (1982). Fluid mechanics of turbomachines: a review. Int. J. Heat

Fluid Flow, 103, No. 1, 3–11.
Johnson, I. A. and Bullock, R. O. (eds.). (1965). Aerodynamic design of axial flow compressors

(revised). NASA Report SP-36.
Jones, R. V. (1986). Genius in engineering. Proc. Instn Mech Engrs., 200, No. B4, 271–6.
Kerrebrock, J. L. (1981). Flow in transonic compressors—the Dryden Lecture. AIAA J., 19, 4–19.
Kerrebrock, J. L. (1984). Aircraft Engines and Gas Turbines. MIT Press.
Kline, S. J. (1959). On the nature of stall. Trans Am. Soc. Mech. Engrs., Series D, 81, 305–20.
Lewis, R. I. (1996). Turbomachinery Performance Analysis. Arnold, London.
Spera, D. A. (ed.). (1998). Wind Turbine Technology (fundamental concepts of wind turbine engi-

neering). ASME.
Taylor, E. S. (1971). Boundary layers, wakes and losses in turbomachines. Gas Turbine

Laboratory Rep. 105, MIT.
Ücer, A. S., Stow, P. and Hirsch, C. (eds.). (1985). Thermodynamics and Fluid Mechanics of

Turbomachinery, Vols. 1 and 2. NATO Advanced Science Inst. Series, Martinus Nijhoff.
Ward-Smith, A. J. (1980). Internal Fluid Flow: The Fluid Dynamics of Flow in Pipes and Ducts.

Clarendon.
Whitfield, A. and Baines, N. C. (1990). Design of Radial Flow Turbomachines. Longman.
Wilde, G. L. (1977). The design and performance of high temperature turbines in turbofan

engines. 1977 Tokyo Joint Gas Turbine Congress, co-sponsored by Gas Turbine Soc. of Japan,
the Japan Soc. of Mech. Engrs and the Am. Soc. of Mech. Engrs., pp. 194–205.

Wilson, D. G. (1984). The Design of High-Efficiency Turbomachinery and Gas Turbines. MIT
Press.

Young, F. R. (1989). Cavitation. McGraw-Hill.

377



APPENDIX 1

Conversion of British Units to 
SI Units

Length Force
1 inch = 0.0254m 1lbf = 4.448N
1 foot = 0.3048m 1ton f (UK) = 9.964kN

Area Pressure
1 in2 = 6.452 ¥ 10-4 m2 1 lbf/in2 = 6.895kPa
1 ft2 = 0.09290m2 1 ft H2O = 2.989kPa

1 inHg = 3.386kPa
1bar = 100.0kPa

Volume Energy
1 in3 = 16.39cm3 1 ft lbf = 1.356J
1 ft3 = 28.32dm3 1Btu = 1.055kJ

= 0.02832m3

1 gall (UK) = 4.546dm3

Velocity Specific energy
1ft/s = 0.3048m/s 1 ft lbf/lb = 2.989J/kg
1 mile/h = 0.447m/s 1Btu/lb = 2.326kJ/kg

Mass Specific heat capacity
1 lb = 0.4536kg 1 ft lbf/(lb °F) = 5.38J/(kg °C)
1 ton (UK) = 1016kg 1ft lbf/(slug °F) = 0.167J/(kg °C)

1Btu/(lb °F) = 4.188kJ/(kg °C)

Density Power
1 lb/ft3 = 16.02kg/m3 1hp = 0.7457kW
1slug/ft3 = 515.4kg/m3
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APPENDIX 2

Answers to Problems

Chapter 1

1. 6.29m3/s.
2. 9.15m/s; 5.33 atmospheres.
3. 551rev/min, 1:10.8; 0.885m3/s; 17.85MN.
4. 4030rev/min; 31.4kg/s.

Chapter 2

1. 88.1%.
2. (i) 704K; (ii) 750K; (iii) 668K.
3. (i) 500K, 0.313m3/kg; (ii) 1.042.
4. 49.1kg/s; 24mm.
5. (i) 630kPa, 275°C; 240kPa; 201°C; 85kPa, 126°C; 26kPa, q = 0.988; 7kPa, q =

0.95; (ii) 0.638, 0.655, 0.688, 0.726, 0.739; (iii) 0.739, 0.724; (iv) 1.075.

Chapter 3

1. 49.8deg.
2. 0.77; CD = 0.048, CL = 2.15.
3. -1.3deg, 9.5deg, 1.11.
4. (i) 53deg and 29.5deg; (ii) 0.962; (iii) 2.17kN/m2.
5. (a) s/l = 1.0, a2 = 24.8deg; (b) CL = 0.872.
6. (b) 57.8deg; (c) (i) 357kPa; (ii) 0.96; (iii) 0.0218, 1.075.
7. (a) a1 = 73.2°, a2 = 68.1°.

Chapter 4

2. (i) 88%; (ii) 86.17%; (iii) 1170.6K
3. a2 = 70deg, b2 = 7.02deg, a3 = 18.4deg, b3 = 50.37deg.
4. 22.7kJ/kg; 420kPa, 117°C.
5. 91%.
6. (i) 1.503; (ii) 39.9deg, 59deg; (iii) 0.25; (iv) 90.5 and 81.6%.
7. (i) 488m/s; (ii) 266.1m/s; (iii) 0.83; (iv) 0.128.
8. (i) 215m/s; (ii) 0.098, 2.68; (iii) 0.872; (iv) 265°C, 0.75MPa.
9. (a) (i) 601.9m/s; (ii) 282.8m/s; (iii) 79.8%. (b) 89.23%.
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10. (b) (i) 130.9kJ/kg; (ii) 301.6m/s; (iii) 707.6K (c) (i) 10,200 rev/min; (ii) 0.565m;
(iii) 0.845.

11. (ii) 0.2166; (iii) 8740 rev/min. (iv) 450.7m/s, 0.846.

Chapter 5

1. 14 stages.
2. 30.6°C.
3. 132.5m/s, 56.1kg/s; 10.1MW.
4. 86.5%; 9.28MW.
5. 0.59, 0.415.
6. 33.5deg, 8.5deg, 52.9deg; 0.827; 34.5deg, 1.11.
7. 56.9deg, 41deg; 21.8deg.
8. (i) 244.7m/s; (ii) 25.42kg/s, 16,866 rev/min; (iii) 38.33kJ/kg; (iv) 84.7%; (v) 5.135

stages, 0.9743MW; (vi) With five stages and the same loading, then the pressure
ratio is 5.781. However, to maintain a pressure ratio of 6.0, the specific work must
be increased to 39.37kJ/kg. With five stages the weight and cost would be lower.

9. (a) 16.22deg, 22.08deg, 33.79deg. (b) 467.2Pa, 7.42m/s.
10. (i) b1 = 70.79deg, b2 = 68.24deg; (ii) 83.96%; (iii) 399.3Pa; (iv) 7.144cm.
11. (i) 141.1Pa, 0.588; (ii) 60.48Pa; (iii) 70.14%.

Chapter 6

1. 55 and 47deg. 2. 0.602, 1.38, -0.08 (i.e. implies large losses near hub)
4. 70.7m/s. 5. Work done is constant at all radii.

6. (i) 480m/s; (ii) 0.818; (iii) 0.08; (iv) 3.42MW; (v) 906.8K, 892.2K.
7. (i) 62deg; (ii) 61.3 and 7.6deg; (iii) 45.2 and 55.9deg, (iv) -0.175, 0.477.
8. See Figure 6.13. For (i) at x/rt = 0.05, cx = 113.2m/s.

Chapter 7

1. (i) 27.9m/s; (ii) 880 rev/min, 0.604m; (iii) 182W; (iv) 0.0526 (rad).
2. 579kW; 169mm; 50.0.
3. 0.875; 5.61kg/s.
4. 26,800 rev/min; 0.203m, 0.525.
5. 0.735, 90.5%.
6. (i) 542.5kW; (ii) 536 and 519kPa; (iii) 586 and 240.8kPa, 1.20, 176m/s; (iv) 0.875;

(v) 0.22; (vi) 28,400 rev/min.
7. (i) 29.4dm3/s; (ii) 0.781; (iii) 77.7deg; (iv) 7.82kW.
8. (i) 14.11cm; (ii) 2.635m; (iii) 0.7664; (iv) 17.73m; (v) 13.8kW; ss = 0.722,

sB = 0.752.
9. (a) See text (b) (i) 32,214 rev/min; (ii) 5.246kg/s; (c) (i) 1.254MW; (ii) 6.997.

c a r b a r

c a r b a r

x

x

1
2 2 2

2
2 2 2

1 2

2 1 2

2 1 2

43 2 10 4

= - -( ) - ( )[ ]
= - -( ) - ( )[ ]

= =

constant

constant

ln

ln

. deg, . deg.b b
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Chapter 8

1. 586m/s, 73.75deg.
2. (i) 205.8kPa, 977K; (ii) 125.4mm, 89,200 rev/min; (iii) 1MW.
3. (i) 90.3%; (ii) 269mm; (iii) 0.051, 0.223.
4. 1593K.
5. 2.159m3/s, 500kW.
6. (a) 10.089kg/s, 23,356 rev/min; (b) 9.063 ¥ 105, 1.879 ¥ 106.
7. (i) 81.82%; (ii) 890K, 184.3kPa; (iii) 1.206cm; (iv) 196.3m/s; (v) 0.492; (vi) rs3 =

6.59cm, rh3 = 2.636cm.

Chapter 9

1. (i) 224kW; (ii) 0.2162m3/s; (iii) 6.423.
2. (a) 2.138m; (b) For d = 2.2m, (i) 17.32m; (ii) 59.87m/s, 40.3MW.
3. (i) 378.7 rev/min; (ii) 6.906MW, 0.252 (rad); (iii) 0.783; (iv) 3.
4. Head loss in pipline is 17.8m. (i) 672.2 rev/min; (ii) 84.5%; (iii) 6.735MW; 

(iv) 2.59%.
5. (i) 12.82MW, 8.69m3/s; (ii) 1.0m; (iii) 37.6m/s; (iv) 0.226m.
6. (i) 663.2 rev/min; (ii) 69.55deg, 59.2deg; (iii) 0.152m and 0.169m.
7. (b) (i) 1.459 (rad); (ii) 107.6m3/s; (iii) 3.153m, 15.52m/s; (c) (i) 398.7 rev/min,

0.456m2/s; (ii) 20.6kW (uncorrected), 19.55kW (corrected); (iii) 4.06 (rad); (d) 
Hs - Ha = -2.18m.

8. (i) 0.94; (ii) 115.2 rev/min, 5.068m; (iii) 197.2m2/s; (iv) 0.924m.
9. (i) 11.4m3/s, 19.47MW; (ii) 72.6deg, 75.04deg at tip; (iii) 25.73deg, 59.54deg at

hub.
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